We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we condu...We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we conducted simulations at medium sea.Results showed that the effects of deck motion on takeoff varied with initial phases,and airwake could help reducing aircraft′s sinkage.We also found that the deck motion played a major role in the effects caused by the interaction of deck motion and ship airwake.展开更多
Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the grou...Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.展开更多
The possibility and causes of flight accidents by operational error/deviation in takeoff are analyzed in this paper. The following three stages are each described individually: before liftoff, near liftoff and initial...The possibility and causes of flight accidents by operational error/deviation in takeoff are analyzed in this paper. The following three stages are each described individually: before liftoff, near liftoff and initial climb. Relations of accident/incident causal factors by operational error with intrinsical flight mechanics are discussed.展开更多
根据旋翼机和固定翼飞机的气动理论开发了一个综合方法过程用于估算电动垂直起降(Electric vertical takeoff and landing, e VTOL)飞行器的飞行性能。这种飞机通常采用多旋翼垂直飞行,螺旋桨和机翼的不同组合方式实现飞行。其中,对旋...根据旋翼机和固定翼飞机的气动理论开发了一个综合方法过程用于估算电动垂直起降(Electric vertical takeoff and landing, e VTOL)飞行器的飞行性能。这种飞机通常采用多旋翼垂直飞行,螺旋桨和机翼的不同组合方式实现飞行。其中,对旋翼和螺旋桨的气动性能采用传统动量理论分析和旋翼元素分析。本文利用此综合理论研究了12架e VTOL飞行器的飞行性能,包括多旋翼飞行器、矢量推进飞行器和升力巡航飞行器。计算了悬停、爬升和下降以及巡航水平飞行,不同飞行状态时驱动电机、旋翼和机身的飞行特性。据此,可以进一步确定电力推进系统的性能指标,以匹配螺旋桨或旋翼,从而满足飞行任务。展开更多
在全球变暖的背景下,高温热浪事件显著增多且对飞机性能的影响日益显著。利用机场气象站点观测数据、通用地球系统模式版本2(CESM2,community earth system model version 2)和波音性能软件(BPS,Boeing performance software)分析了中国...在全球变暖的背景下,高温热浪事件显著增多且对飞机性能的影响日益显著。利用机场气象站点观测数据、通用地球系统模式版本2(CESM2,community earth system model version 2)和波音性能软件(BPS,Boeing performance software)分析了中国1973—2022年期间机场高温热浪发生的趋势,并定量评估了未来高温热浪事件对B737-800飞机最大起飞重量和起飞滑跑距离的影响。结果表明,1973—2022年期间平原机场纬度越低,高温日数上升趋势越明显,高温热浪事件在1989年后显著增多,而高原机场在此期间未发生高温热浪事件;2096—2100年期间4个机场的飞机最大起飞重量全部受到高温影响的限制,相较于2010—2014年减载天数明显增多,其中高原机场受影响程度最大;当飞机满载飞行时,飞机在3个平原机场的起飞滑跑距离随温度升高并呈非线性变化,温度越高,增长趋势越明显。该结论可为未来改造或新建机场跑道及航空公司制定飞行计划提供重要的参考依据。展开更多
基金supported by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)
文摘We first analyzed the force and motion of naval aircraft during launching process.Further,we investigated the ship deck with the form of a ramp and established deck motion model and ship airwake model.Finally,we conducted simulations at medium sea.Results showed that the effects of deck motion on takeoff varied with initial phases,and airwake could help reducing aircraft′s sinkage.We also found that the deck motion played a major role in the effects caused by the interaction of deck motion and ship airwake.
基金Supported by Yildiz Technical University Scientific Research Projects Coordination Department under Project No.2013-10-01-KAP02
文摘Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.
文摘The possibility and causes of flight accidents by operational error/deviation in takeoff are analyzed in this paper. The following three stages are each described individually: before liftoff, near liftoff and initial climb. Relations of accident/incident causal factors by operational error with intrinsical flight mechanics are discussed.
基金This work was supported by the National Defense Outstanding Youth Science Foundation(No.2018-JCJQ-ZQ-053)the National Natural Science Foundation of China(No.52275114)+1 种基金the China Postdoctoral Science Foundation Funded Project(No.2019M651827)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘根据旋翼机和固定翼飞机的气动理论开发了一个综合方法过程用于估算电动垂直起降(Electric vertical takeoff and landing, e VTOL)飞行器的飞行性能。这种飞机通常采用多旋翼垂直飞行,螺旋桨和机翼的不同组合方式实现飞行。其中,对旋翼和螺旋桨的气动性能采用传统动量理论分析和旋翼元素分析。本文利用此综合理论研究了12架e VTOL飞行器的飞行性能,包括多旋翼飞行器、矢量推进飞行器和升力巡航飞行器。计算了悬停、爬升和下降以及巡航水平飞行,不同飞行状态时驱动电机、旋翼和机身的飞行特性。据此,可以进一步确定电力推进系统的性能指标,以匹配螺旋桨或旋翼,从而满足飞行任务。
文摘在全球变暖的背景下,高温热浪事件显著增多且对飞机性能的影响日益显著。利用机场气象站点观测数据、通用地球系统模式版本2(CESM2,community earth system model version 2)和波音性能软件(BPS,Boeing performance software)分析了中国1973—2022年期间机场高温热浪发生的趋势,并定量评估了未来高温热浪事件对B737-800飞机最大起飞重量和起飞滑跑距离的影响。结果表明,1973—2022年期间平原机场纬度越低,高温日数上升趋势越明显,高温热浪事件在1989年后显著增多,而高原机场在此期间未发生高温热浪事件;2096—2100年期间4个机场的飞机最大起飞重量全部受到高温影响的限制,相较于2010—2014年减载天数明显增多,其中高原机场受影响程度最大;当飞机满载飞行时,飞机在3个平原机场的起飞滑跑距离随温度升高并呈非线性变化,温度越高,增长趋势越明显。该结论可为未来改造或新建机场跑道及航空公司制定飞行计划提供重要的参考依据。