Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres...As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.展开更多
Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- ...Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties.展开更多
Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn g...Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems,advanced robotics,artificial intelligence,and human-machine interfaces.Tactile sense is one of the most important senses of human skin that has attracted special attention.The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene,the most celebrated two-dimensional material,in electronic tactile sensing devices.With a special emphasis on the works achieved since 2016,this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods,device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials.This review emphasizes on:(1)the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials;(2)state-of-the-art protocols recently developed for high-performance tactile sensing,including representative examples;and(3)perspectives and current challenges for graphene-based tactile sensors in E-skin applications.A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin.展开更多
Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi...Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.展开更多
Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard cont...Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard contact-electrification still poses challenges for the practical applications.In this work,a liquid–solid interface ferrofluid-based triboelectric tactile sensor(FTTS)with ultrahigh sensitivity is proposed.Relying on the fluidity and magnetism of ferrofluid,the topography of microstructure can be flexibly adjusted by directly employing ferrofluid as triboelectric material and controlling the position of outward magnet.To date,an ultrahigh sensitivity of 21.48 k Pa;for the triboelectric sensors can be achieved due to the high spike microstructure,low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification.The detection limit of FTTS of 1.25 Pa with a wide detection range to 390 k Pa was also obtained.In addition,the oleophobic property between ferrofluid and poly-tetra-fluoro-ethylene triboelectric layer can greatly reduce the wear and tear,resulting in the great improvement of stability.Finally,a strategy for personalized password lock with high security level has been demonstrated,illustrating a great perspective for practical application in smart home,artificial intelligence,Internet of things,etc.展开更多
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was ...In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.展开更多
In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon tech...In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.展开更多
Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms.Inspired by cutaneous perceptual functions,a bionic tactile perceptual platform is proposed.PDMS-based tactile...Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms.Inspired by cutaneous perceptual functions,a bionic tactile perceptual platform is proposed.PDMS-based tactile sensors act as bionic skin touch receptors.Flexible indium tin oxide neuromorphic transistors fabricated with a single-step mask pro-cessing act as artificial synapses.Thus,the tactile perceptual platform possesses the ability of information processing.Interestingly,the flexible tactile perception platform can find applications in information encryption and decryption.With adoption of cipher,signal transmitted by the perception platform is encrypted.Thus,the security of information transmis-sion is effectively improved.The flexible tactile perceptual platform would have potentials in cognitive wearable devices,advanced human-machine interaction system,and intelligent bionic robots.展开更多
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金financial supports from the National Natural Science Foundation of China(No.61975173)the Key Research and Development Project of Zhejiang Province(No.2022C03103,2023C01045).
文摘As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2009AA01Z314,2009AA01Z311)the Jiangsu Province Natural Science Foundation(BK2009272)theJiangsu Province″333″Program~~
文摘Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties.
基金supported by the National Key Research and Development Program of China(2017YFB0405400)National Natural Science Foundation of China(51732007)+1 种基金Major Innovation Projects in Shandong Province(2018YFJH0503)Natural Science Foundation of Shandong Province(ZR2018BEM010).
文摘Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems,advanced robotics,artificial intelligence,and human-machine interfaces.Tactile sense is one of the most important senses of human skin that has attracted special attention.The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene,the most celebrated two-dimensional material,in electronic tactile sensing devices.With a special emphasis on the works achieved since 2016,this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods,device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials.This review emphasizes on:(1)the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials;(2)state-of-the-art protocols recently developed for high-performance tactile sensing,including representative examples;and(3)perspectives and current challenges for graphene-based tactile sensors in E-skin applications.A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin.
基金funding from National Natural Science Foundation of China(NSFC Nos.61774157,81771388,61874121,and 61874012)Beijing Natural Science Foundation(No.4182075)the Capital Science and Technology Conditions Platform Project(Project ID:Z181100009518014).
文摘Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications.
基金Open access funding provided by Shanghai Jiao Tong University。
文摘Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard contact-electrification still poses challenges for the practical applications.In this work,a liquid–solid interface ferrofluid-based triboelectric tactile sensor(FTTS)with ultrahigh sensitivity is proposed.Relying on the fluidity and magnetism of ferrofluid,the topography of microstructure can be flexibly adjusted by directly employing ferrofluid as triboelectric material and controlling the position of outward magnet.To date,an ultrahigh sensitivity of 21.48 k Pa;for the triboelectric sensors can be achieved due to the high spike microstructure,low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification.The detection limit of FTTS of 1.25 Pa with a wide detection range to 390 k Pa was also obtained.In addition,the oleophobic property between ferrofluid and poly-tetra-fluoro-ethylene triboelectric layer can greatly reduce the wear and tear,resulting in the great improvement of stability.Finally,a strategy for personalized password lock with high security level has been demonstrated,illustrating a great perspective for practical application in smart home,artificial intelligence,Internet of things,etc.
文摘In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.
基金supported by the Nano Special Projects of Shanghai Science and Technology Commission of China(Grant No.11nm0560800)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11104284)
文摘In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.
基金Project supported by the National Natural Science Foundation of China(Grant No.51972316)Ningbo Key Scientific and Technological Project(Grant No.2021Z116).
文摘Mimicking tactile perception is critical to the development of advanced interactive neuromorphic platforms.Inspired by cutaneous perceptual functions,a bionic tactile perceptual platform is proposed.PDMS-based tactile sensors act as bionic skin touch receptors.Flexible indium tin oxide neuromorphic transistors fabricated with a single-step mask pro-cessing act as artificial synapses.Thus,the tactile perceptual platform possesses the ability of information processing.Interestingly,the flexible tactile perception platform can find applications in information encryption and decryption.With adoption of cipher,signal transmitted by the perception platform is encrypted.Thus,the security of information transmis-sion is effectively improved.The flexible tactile perceptual platform would have potentials in cognitive wearable devices,advanced human-machine interaction system,and intelligent bionic robots.