Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliabil...This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliability engineering are summarized as a query,a dilemma,and a puzzle.Then,through philosophical reflection,we introduce the theoretical solutions given by belief reliability theory,including scientific principles,basic equations,reliability science experiments,and mathematical measures.The basic methods and technologies of belief reliability,namely,belief reliability analysis,function-oriented belief reliability design,belief reliability evaluation,and several newly developed methods and technologies are sequentially elaborated and overviewed.Based on the above investigations,we summarize the significance of belief reliability theory and make some prospects about future research,aiming to promote the development of reliability science and engineering.展开更多
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on be...To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt...A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.展开更多
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金supported by the National Natural Science Foundation of China(62073009,52775020,72201013)the China Postdoctoral Science Foundation(2022M710314)the Funding of Science&Technology on Reliability&Environmental Engineering Laboratory(6142004210102)。
文摘This paper systematically introduces and reviews a scientific exploration of reliability called the belief reliability.Beginning with the origin of reliability engineering,the problems of present theories for reliability engineering are summarized as a query,a dilemma,and a puzzle.Then,through philosophical reflection,we introduce the theoretical solutions given by belief reliability theory,including scientific principles,basic equations,reliability science experiments,and mathematical measures.The basic methods and technologies of belief reliability,namely,belief reliability analysis,function-oriented belief reliability design,belief reliability evaluation,and several newly developed methods and technologies are sequentially elaborated and overviewed.Based on the above investigations,we summarize the significance of belief reliability theory and make some prospects about future research,aiming to promote the development of reliability science and engineering.
基金This work was supported by the Youth Foundation of National Science Foundation of China(62001503)the Special Fund for Taishan Scholar Project(ts 201712072).
文摘To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.
基金supported by the National Natural Science Foundation of China(72471067,72431011,72471238,72231011,62303474,72301286)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK239909299001-010).
文摘A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach.