The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept...The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.展开更多
Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reli...Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks.展开更多
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,or...The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.展开更多
The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: ...The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network.展开更多
Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for...Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for using in nonvolatile memory storage and neuromorphic computing. In this paper, we report the fabrication of vertical sandwiched memristor device using ultrathin quasi-two-dimensional gallium oxide produced by squeegee method. The as-fabricated two-terminal memristor device exhibited the essential functions of biological synapses, such as depression and potentiation of synaptic weight, transition from short time memory to long time memory, spike-timing-dependent plasticity, and spike-rate-dependent plasticity. The synaptic weight of the memristor could be tuned by the applied voltage pulse, number,width, and frequency. We believe that the injection of the top Ag cations should play a significant role for the memristor phenomenon. The ultrathin of medium layer represents an advance to integration in vertical direction for future applications and our results provide an alternative way to fabricate synaptic devices.展开更多
To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attainin...To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attaining robust color discrimination across a wide intensity range,even irrespective of medium limitations in the channel layer,poses a significant challenge.Here,we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities.By incorporating the strong induced dipole moment effect at the excitation,modulated by the wavelength of the incident light,into the floating gate,we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm^(-2).This approach is not restricted to a specific medium in the channel layer,thereby enhancing its applicability.The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array,involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction.Consequently,a convolutional neural network can achieve an impressive inference accuracy of over 94%for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing.Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses,enabling significant advancements in artificial visual systems.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp...Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.展开更多
Synaptic plasticity can greatly affect the firing behavior of neural networks,and it specifically refers to changes in the strength,morphology,and function of synaptic connections.In this paper,a novel memristor model...Synaptic plasticity can greatly affect the firing behavior of neural networks,and it specifically refers to changes in the strength,morphology,and function of synaptic connections.In this paper,a novel memristor model,which can be configured as a volatile and nonvolatile memristor by adjusting its internal parameter,is proposed to mimic the short-term and long-term synaptic plasticity.Then,a bi-neuron network model,with the proposed memristor serving as a coupling synapse and the external electromagnetic radiation being emulated by the flux-controlled memristors,is established to elucidate the effects of short-term and long-term synaptic plasticity on firing activity of the neuron network.The resultant seven-dimensional(7D)neuron network has no equilibrium point and its hidden dynamical behavior is revealed by phase diagram,time series,bifurcation diagram,Lyapunov exponent spectrum,and two-dimensional(2D)dynamic map.Our results show the short-term and long-term plasticity can induce different bifurcation scenarios when the coupling strength increases.In addition,memristor synaptic plasticity has a great influence on the distribution of firing patterns in the parameter space.More interestingly,when exploring the synchronous firing behavior of two neurons,the two neurons can gradually achieve phase synchronization as the coupling strength increases along the opposite directions under two different memory attributes.Finally,a microcontroller-based hardware system is implemented to verify the numerical simulation results.展开更多
Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and g...Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.展开更多
Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synapti...Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.展开更多
Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and res...Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and response functions can be constructed to mimic complex biological visual sensing behaviors.Here,recent progresses on optoelectronic neuromorphic memristors and optoelectronic neuromorphic transistors are briefly reviewed.A variety of visual synaptic functions stimulated on optoelectronic neuromorphic devices are discussed,including light-triggered short-term plasticities,long-term plasticities,and neural facilitation.These optoelectronic neuromorphic devices can also mimic human visual perception,information processing,and cognition.The optoelectronic neuromorphic devices that simulate biological visual perception functions will have potential application prospects in areas such as bionic neurological optoelectronic systems and intelligent robots.展开更多
In the present study,the morphological characteristics of the synaptic structure(MCSS)of the substance P immunoreactive(SPIR)teminals in the marginal division(MrD)of the ratstriatum were studied by using electron micr...In the present study,the morphological characteristics of the synaptic structure(MCSS)of the substance P immunoreactive(SPIR)teminals in the marginal division(MrD)of the ratstriatum were studied by using electron microscopy and immunocytochemistry.Four major typesof SPIR symnapses were identified in teh MrD.axodendritic,axo-spinous,axo-axonic,and com-pound.Axo-dendritic and axo-spinous synapses were more common,and a few axo-axonic andcompound synapses wer observed as well.In the postsynaptic target zones of axo-dendritic,andaxo-spinous synapses,there were small or large dendrites or spires.Some synapses with morethan two synaptic components are referred to as compound synapses.Both symmetric andasymmetric SPIR synapses were seen in the MrD.The vesicles in the SPIR presynaptic boutonswere mostly pleomorphic although a few of them were round,The MCSS distinguishes theultrastructure of the MrD from that of the other part of striatum,which suggests that the func-tion of the MrD may be different from that of the rest of the striatum.展开更多
As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)wit...As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future.展开更多
The latest developments in bio-inspired neuromorphic vision sensors can be summarized in 3 keywords:smaller,faster,and smarter.(1)Smaller:Devices are becoming more compact by integrating previously separated component...The latest developments in bio-inspired neuromorphic vision sensors can be summarized in 3 keywords:smaller,faster,and smarter.(1)Smaller:Devices are becoming more compact by integrating previously separated components such as sensors,memory,and processing units.As a prime example,the transition from traditional sensory vision computing to in-sensor vision computing has shown clear benefits,such as simpler circuitry,lower power consumption,and less data redundancy.(2)Swifter:Owing to the nature of physics,smaller and more integrated devices can detect,process,and react to input more quickly.In addition,the methods for sensing and processing optical information using various materials(such as oxide semiconductors)are evolving.(3)Smarter:Owing to these two main research directions,we can expect advanced applications such as adaptive vision sensors,collision sensors,and nociceptive sensors.This review mainly focuses on the recent progress,working mechanisms,image pre-processing techniques,and advanced features of two types of neuromorphic vision sensors based on near-sensor and in-sensor vision computing methodologies.展开更多
The further development of traditional von Neumann-architecture computers is limited by the breaking of Moore’s law and the von Neumann bottleneck, which make them unsuitable for future high-performance artificial in...The further development of traditional von Neumann-architecture computers is limited by the breaking of Moore’s law and the von Neumann bottleneck, which make them unsuitable for future high-performance artificial intelligence (AI)systems. Therefore, new computing paradigms are desperately needed. Inspired by the human brain, neuromorphic computing is proposed to realize AI while reducing power consumption. As one of the basic hardware units for neuromorphic computing, artificial synapses have recently aroused worldwide research interests. Among various electronic devices that mimic biological synapses, synaptic transistors show promising properties, such as the ability to perform signal transmission and learning simultaneously, allowing dynamic spatiotemporal information processing applications. In this article, we provide a review of recent advances in electrolyte-and ferroelectric-gated synaptic transistors. Their structures, materials,working mechanisms, advantages, and disadvantages will be presented. In addition, the challenges of developing advanced synaptic transistors are discussed.展开更多
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continu...Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition.展开更多
The synapse of human brain neurons is not only the transmission channel of information,but also the basic unit of human brain learning and information storing.The artificial synapse is constructed based on the Sr_(0.9...The synapse of human brain neurons is not only the transmission channel of information,but also the basic unit of human brain learning and information storing.The artificial synapse is constructed based on the Sr_(0.97)Ba_(0.03)TiO_(3-x)(SBT)memristor,which realizes the short-term and long-term plasticity of the synapse.The experiential learning and non-associative learning behavior in accordance with human cognitive rules are realized by using the SBT-memristor-based synapse.The process of synaptic habituation and sensitization is analyzed.This study provides insightful guidance for realization of artificial synapse and the development of artificial neural network.展开更多
When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic fi...When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance.展开更多
基金supported by National Natural Science Foundation of China(No.51902250).
文摘The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.
基金financially supported by National R&D Program(2018M3D1A1058793,2021M3H4A3A02086430)through NRF(National Research Foundation of Korea)funded by the Ministry of Science and ICTsupported by SAIT,Samsung Electronics Co.,Ltd。
文摘Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks.
基金supported by the NSFC(51925306 and 21774130)National Key R&D Program of China(2018FYA 0305800)+2 种基金Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)University of Chinese Academy of Sciences.
文摘The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.
基金Project supported by the National Natural Science Foundation of China(Grant No.61804055)"Chenguang Program"supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(Grant No.17CG24)Shanghai Science and Technology Innovation Action Plan,China(Grant No.19JC1416700).
文摘The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network.
基金the National Natural Science Foundation of China(Grant No.11834017)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(Grant No.XDB30000000)+2 种基金the Key Research Program of Frontier Sciences of the CAS(Grant No.QYZDB-SSW-SLH004)the National Key R&D Program of China(Grant No.2016YFA0300904)the Fundamental Research Funds for the Central Universities,China(Grant No.310421101)
文摘Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for using in nonvolatile memory storage and neuromorphic computing. In this paper, we report the fabrication of vertical sandwiched memristor device using ultrathin quasi-two-dimensional gallium oxide produced by squeegee method. The as-fabricated two-terminal memristor device exhibited the essential functions of biological synapses, such as depression and potentiation of synaptic weight, transition from short time memory to long time memory, spike-timing-dependent plasticity, and spike-rate-dependent plasticity. The synaptic weight of the memristor could be tuned by the applied voltage pulse, number,width, and frequency. We believe that the injection of the top Ag cations should play a significant role for the memristor phenomenon. The ultrathin of medium layer represents an advance to integration in vertical direction for future applications and our results provide an alternative way to fabricate synaptic devices.
基金supported by National Research Foundation of Korea(NRF)[RS-2024-00350701 and RS-2023-00207828].
文摘To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attaining robust color discrimination across a wide intensity range,even irrespective of medium limitations in the channel layer,poses a significant challenge.Here,we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities.By incorporating the strong induced dipole moment effect at the excitation,modulated by the wavelength of the incident light,into the floating gate,we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm^(-2).This approach is not restricted to a specific medium in the channel layer,thereby enhancing its applicability.The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array,involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction.Consequently,a convolutional neural network can achieve an impressive inference accuracy of over 94%for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing.Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses,enabling significant advancements in artificial visual systems.
基金supported by the National Key R&D Plan of China(Grant 2021YFB3600703)the National Natural Science Foundation(Grant 62204137)of China for Youth,the Open Research Fund Program of Beijing National Research Centre for Information Science and Technology(BR2023KF02009)+1 种基金the National Natural Science Foundation of china(U20A20168,61874065,and 51861145202)the Research Fund from Tsinghua University Initiative Scientific Research Program,the Center for Flexible Electronics Technology of Tsinghua University,and a grant from the Guoqiang Institute,Tsinghua University.
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411)。
文摘Synaptic plasticity can greatly affect the firing behavior of neural networks,and it specifically refers to changes in the strength,morphology,and function of synaptic connections.In this paper,a novel memristor model,which can be configured as a volatile and nonvolatile memristor by adjusting its internal parameter,is proposed to mimic the short-term and long-term synaptic plasticity.Then,a bi-neuron network model,with the proposed memristor serving as a coupling synapse and the external electromagnetic radiation being emulated by the flux-controlled memristors,is established to elucidate the effects of short-term and long-term synaptic plasticity on firing activity of the neuron network.The resultant seven-dimensional(7D)neuron network has no equilibrium point and its hidden dynamical behavior is revealed by phase diagram,time series,bifurcation diagram,Lyapunov exponent spectrum,and two-dimensional(2D)dynamic map.Our results show the short-term and long-term plasticity can induce different bifurcation scenarios when the coupling strength increases.In addition,memristor synaptic plasticity has a great influence on the distribution of firing patterns in the parameter space.More interestingly,when exploring the synchronous firing behavior of two neurons,the two neurons can gradually achieve phase synchronization as the coupling strength increases along the opposite directions under two different memory attributes.Finally,a microcontroller-based hardware system is implemented to verify the numerical simulation results.
基金sponsored by the National Natural Science Foundation of China(Grant Nos 11574057,and 12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607).
文摘Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.
基金supported by the Characterization platform for advanced materials funded by the Korea Research Institute of Standards and Science(KRISS-2021-GP2021-0011)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government MSIT(2021M3D1A20396541).
文摘Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.
基金Project supported by the National Natural Science Foundation of China(Grant No.51972316)Open Project of State Key Laboratory of ASIC&System(Grant No.2019KF006)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LR18F040002)Program for Ningbo Municipal Science and Technology Innovative Research Team,China(Grant No.2016B10005).
文摘Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and response functions can be constructed to mimic complex biological visual sensing behaviors.Here,recent progresses on optoelectronic neuromorphic memristors and optoelectronic neuromorphic transistors are briefly reviewed.A variety of visual synaptic functions stimulated on optoelectronic neuromorphic devices are discussed,including light-triggered short-term plasticities,long-term plasticities,and neural facilitation.These optoelectronic neuromorphic devices can also mimic human visual perception,information processing,and cognition.The optoelectronic neuromorphic devices that simulate biological visual perception functions will have potential application prospects in areas such as bionic neurological optoelectronic systems and intelligent robots.
文摘In the present study,the morphological characteristics of the synaptic structure(MCSS)of the substance P immunoreactive(SPIR)teminals in the marginal division(MrD)of the ratstriatum were studied by using electron microscopy and immunocytochemistry.Four major typesof SPIR symnapses were identified in teh MrD.axodendritic,axo-spinous,axo-axonic,and com-pound.Axo-dendritic and axo-spinous synapses were more common,and a few axo-axonic andcompound synapses wer observed as well.In the postsynaptic target zones of axo-dendritic,andaxo-spinous synapses,there were small or large dendrites or spires.Some synapses with morethan two synaptic components are referred to as compound synapses.Both symmetric andasymmetric SPIR synapses were seen in the MrD.The vesicles in the SPIR presynaptic boutonswere mostly pleomorphic although a few of them were round,The MCSS distinguishes theultrastructure of the MrD from that of the other part of striatum,which suggests that the func-tion of the MrD may be different from that of the rest of the striatum.
基金supported by the National Natural Science Foundation of China(Grant Nos.51922023,61874011)the China Postdoctoral Science Foundation(Grant No.2021M703159)Fundamental Research Funds for the Central Universities(Grant No.E1EG6804).
文摘As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2019R1A2C2002447)This research also was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.NRF-2014R1A6A1030419)This work also was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0020967,Advanced Training Program for Smart Sensor Engineers).
文摘The latest developments in bio-inspired neuromorphic vision sensors can be summarized in 3 keywords:smaller,faster,and smarter.(1)Smaller:Devices are becoming more compact by integrating previously separated components such as sensors,memory,and processing units.As a prime example,the transition from traditional sensory vision computing to in-sensor vision computing has shown clear benefits,such as simpler circuitry,lower power consumption,and less data redundancy.(2)Swifter:Owing to the nature of physics,smaller and more integrated devices can detect,process,and react to input more quickly.In addition,the methods for sensing and processing optical information using various materials(such as oxide semiconductors)are evolving.(3)Smarter:Owing to these two main research directions,we can expect advanced applications such as adaptive vision sensors,collision sensors,and nociceptive sensors.This review mainly focuses on the recent progress,working mechanisms,image pre-processing techniques,and advanced features of two types of neuromorphic vision sensors based on near-sensor and in-sensor vision computing methodologies.
基金Project supported by the National Key R&D Program of China(Grant Nos.2017YFA0303604 and 2019YFA0308500)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2018008)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDJSSW-SLH020)the National Natural Science Foundation of China(Grant Nos.11674385,11404380,11721404,and 11874412)。
文摘The further development of traditional von Neumann-architecture computers is limited by the breaking of Moore’s law and the von Neumann bottleneck, which make them unsuitable for future high-performance artificial intelligence (AI)systems. Therefore, new computing paradigms are desperately needed. Inspired by the human brain, neuromorphic computing is proposed to realize AI while reducing power consumption. As one of the basic hardware units for neuromorphic computing, artificial synapses have recently aroused worldwide research interests. Among various electronic devices that mimic biological synapses, synaptic transistors show promising properties, such as the ability to perform signal transmission and learning simultaneously, allowing dynamic spatiotemporal information processing applications. In this article, we provide a review of recent advances in electrolyte-and ferroelectric-gated synaptic transistors. Their structures, materials,working mechanisms, advantages, and disadvantages will be presented. In addition, the challenges of developing advanced synaptic transistors are discussed.
基金Project supported by the National Science and Technology Major Project of China(Grant No.2017ZX02301007-002)the National Key R&D Plan of China(Grant No.2017YFB0701701)the National Natural Science Foundation of China(Grant Nos.61774068 and 51772113).The authors acknowledge the support from Hubei Key Laboratory of Advanced Memories&Hubei Engineering Research Center on Microelectronics.
文摘Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition.
基金the National Natural Science Foundation of China(Grant Nos.61703246 and 61703247)the Qingdao Science and Technology Plan Project(Grant No.19-6-2-2-cg)the Elite Project of Shandong University of Science and Technology。
文摘The synapse of human brain neurons is not only the transmission channel of information,but also the basic unit of human brain learning and information storing.The artificial synapse is constructed based on the Sr_(0.97)Ba_(0.03)TiO_(3-x)(SBT)memristor,which realizes the short-term and long-term plasticity of the synapse.The experiential learning and non-associative learning behavior in accordance with human cognitive rules are realized by using the SBT-memristor-based synapse.The process of synaptic habituation and sensitization is analyzed.This study provides insightful guidance for realization of artificial synapse and the development of artificial neural network.
基金Project supported by the National Natural Science Foundation of China(Grant No.12062009)the Gansu National Science of Foundation,China(Grant No.20JR5RA473)。
文摘When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance.