期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual‑Olfactory Crossmodal Perception 被引量:3
1
作者 Hailong Ma Huajing Fang +3 位作者 Xinxing Xie Yanming Liu He Tian Yang Chai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期38-52,共15页
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept... The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics. 展开更多
关键词 Violet phosphorus MXene Van der Waals heterojunctions Optoelectronic synapses Crossmodal perception
在线阅读 下载PDF
Two-Terminal Lithium-Mediated Artificial Synapses with Enhanced Weight Modulation for Feasible Hardware Neural Networks 被引量:6
2
作者 Ji Hyun Baek Kyung Ju Kwak +6 位作者 Seung Ju Kim Jaehyun Kim Jae Young Kim In Hyuk Im Sunyoung Lee Kisuk Kang Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期236-253,共18页
Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reli... Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks. 展开更多
关键词 Artificial synapse Neuromorphic Li-based Two-terminal Synaptic plasticity
在线阅读 下载PDF
Organic Optoelectronic Synapses for Sound Perception 被引量:4
3
作者 Yanan Wei Youxing Liu +7 位作者 Qijie Lin Tianhua Liu Song Wang Hao Chen Congqi Li Xiaobin Gu Xin Zhang Hui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期31-40,共10页
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,or... The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels. 展开更多
关键词 Organic optoelectronic synapse Sound perception Recognition factor Impedance spectroscopy Interfacial layer
在线阅读 下载PDF
Recent advances, perspectives, and challenges inferroelectric synapses 被引量:2
4
作者 Bo-Bo Tian Ni Zhong Chun-Gang Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期15-30,共16页
The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: ... The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network. 展开更多
关键词 FERROELECTRIC SYNAPSE ferroelectric tunnel junctions ferroelectric field effect transistors
在线阅读 下载PDF
Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
5
作者 Shuopei Wang Congli He +3 位作者 Jian Tang Rong Yang Dongxia Shi Guangyu Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期183-188,共6页
Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for... Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for using in nonvolatile memory storage and neuromorphic computing. In this paper, we report the fabrication of vertical sandwiched memristor device using ultrathin quasi-two-dimensional gallium oxide produced by squeegee method. The as-fabricated two-terminal memristor device exhibited the essential functions of biological synapses, such as depression and potentiation of synaptic weight, transition from short time memory to long time memory, spike-timing-dependent plasticity, and spike-rate-dependent plasticity. The synaptic weight of the memristor could be tuned by the applied voltage pulse, number,width, and frequency. We believe that the injection of the top Ag cations should play a significant role for the memristor phenomenon. The ultrathin of medium layer represents an advance to integration in vertical direction for future applications and our results provide an alternative way to fabricate synaptic devices. 展开更多
关键词 gallium oxide MEMRISTOR artificial synapse synaptic plasticity
在线阅读 下载PDF
RGB Color-Discriminable Photonic Synapse for Neuromorphic Vision System
6
作者 Bum Ho Jeong Jaewon Lee +6 位作者 Miju Ku Jongmin Lee Dohyung Kim Seokhyun Ham Kyu-Tae Lee Young-Beom Kim Hui Joon Park 《Nano-Micro Letters》 2025年第4期39-62,共24页
To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attainin... To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attaining robust color discrimination across a wide intensity range,even irrespective of medium limitations in the channel layer,poses a significant challenge.Here,we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities.By incorporating the strong induced dipole moment effect at the excitation,modulated by the wavelength of the incident light,into the floating gate,we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm^(-2).This approach is not restricted to a specific medium in the channel layer,thereby enhancing its applicability.The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array,involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction.Consequently,a convolutional neural network can achieve an impressive inference accuracy of over 94%for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing.Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses,enabling significant advancements in artificial visual systems. 展开更多
关键词 Organic field-effect transistor Photonic synapse Excited-state dipole moment RGB color discrimination Neuromorphic visual system
在线阅读 下载PDF
Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor
7
作者 Jing Chen Ming-Yuan Sun +8 位作者 Zhen-Hua Wang Zheng Zhang Kai Zhang Shuai Wang Yu Zhang Xiaoming Wu Tian-Ling Ren Hong Liu Lin Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期134-188,共55页
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp... Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors. 展开更多
关键词 Two-dimensional transistors Dimension limits Performance limits Memory devices Artificial synapses
在线阅读 下载PDF
Influences of short-term and long-term plasticity of memristive synapse on firing activity of neuronal network
8
作者 Zhi-Jun Li Jing Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期487-496,共10页
Synaptic plasticity can greatly affect the firing behavior of neural networks,and it specifically refers to changes in the strength,morphology,and function of synaptic connections.In this paper,a novel memristor model... Synaptic plasticity can greatly affect the firing behavior of neural networks,and it specifically refers to changes in the strength,morphology,and function of synaptic connections.In this paper,a novel memristor model,which can be configured as a volatile and nonvolatile memristor by adjusting its internal parameter,is proposed to mimic the short-term and long-term synaptic plasticity.Then,a bi-neuron network model,with the proposed memristor serving as a coupling synapse and the external electromagnetic radiation being emulated by the flux-controlled memristors,is established to elucidate the effects of short-term and long-term synaptic plasticity on firing activity of the neuron network.The resultant seven-dimensional(7D)neuron network has no equilibrium point and its hidden dynamical behavior is revealed by phase diagram,time series,bifurcation diagram,Lyapunov exponent spectrum,and two-dimensional(2D)dynamic map.Our results show the short-term and long-term plasticity can induce different bifurcation scenarios when the coupling strength increases.In addition,memristor synaptic plasticity has a great influence on the distribution of firing patterns in the parameter space.More interestingly,when exploring the synchronous firing behavior of two neurons,the two neurons can gradually achieve phase synchronization as the coupling strength increases along the opposite directions under two different memory attributes.Finally,a microcontroller-based hardware system is implemented to verify the numerical simulation results. 展开更多
关键词 synaptic plasticity memristive synapse electromagnetic radiation hidden attractor phase synchronization
在线阅读 下载PDF
Application of artificial synapse based on all-inorganic perovskite memristor in neuromorphic computing
9
作者 Fang Luo Wen-Min Zhong +3 位作者 Xin-Gui Tang Jia-Ying Chen Yan-Ping Jiang Qiu-Xiang Liu 《Nano Materials Science》 EI CAS CSCD 2024年第1期68-76,共9页
Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and g... Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system. 展开更多
关键词 MEMRISTOR CsPbBr_(3) Resistive switching Artificial synapse Neuromorphic computing
在线阅读 下载PDF
Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing 被引量:13
10
作者 Ki Chang Kwon Ji Hyun Baek +2 位作者 Kootak Hong Soo Young Kim Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期29-58,共30页
Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synapti... Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs. 展开更多
关键词 Two-dimensional materials MEMRISTORS Neuromorphic computing Artificial synapses Transition metal chalcogenides
在线阅读 下载PDF
Recent progress in optoelectronic neuromorphic devices 被引量:3
11
作者 Yan-Bo Guo Li-Qiang Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期15-27,共13页
Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and res... Rapid developments in artificial intelligence trigger demands for perception and learning of external environments through visual perception systems.Neuromorphic devices and integrated system with photosensing and response functions can be constructed to mimic complex biological visual sensing behaviors.Here,recent progresses on optoelectronic neuromorphic memristors and optoelectronic neuromorphic transistors are briefly reviewed.A variety of visual synaptic functions stimulated on optoelectronic neuromorphic devices are discussed,including light-triggered short-term plasticities,long-term plasticities,and neural facilitation.These optoelectronic neuromorphic devices can also mimic human visual perception,information processing,and cognition.The optoelectronic neuromorphic devices that simulate biological visual perception functions will have potential application prospects in areas such as bionic neurological optoelectronic systems and intelligent robots. 展开更多
关键词 artificial synapses optoelectronic devices neuromorphic devices visual perception systems
在线阅读 下载PDF
Morphological characteristics of the synaptic structures of substance P-immunoreactive terminals in the marginal division of the rat striatum 被引量:1
12
作者 舒斯云 包新民 《Journal of Medical Colleges of PLA(China)》 CAS 1992年第2期141-145,共5页
In the present study,the morphological characteristics of the synaptic structure(MCSS)of the substance P immunoreactive(SPIR)teminals in the marginal division(MrD)of the ratstriatum were studied by using electron micr... In the present study,the morphological characteristics of the synaptic structure(MCSS)of the substance P immunoreactive(SPIR)teminals in the marginal division(MrD)of the ratstriatum were studied by using electron microscopy and immunocytochemistry.Four major typesof SPIR symnapses were identified in teh MrD.axodendritic,axo-spinous,axo-axonic,and com-pound.Axo-dendritic and axo-spinous synapses were more common,and a few axo-axonic andcompound synapses wer observed as well.In the postsynaptic target zones of axo-dendritic,andaxo-spinous synapses,there were small or large dendrites or spires.Some synapses with morethan two synaptic components are referred to as compound synapses.Both symmetric andasymmetric SPIR synapses were seen in the MrD.The vesicles in the SPIR presynaptic boutonswere mostly pleomorphic although a few of them were round,The MCSS distinguishes theultrastructure of the MrD from that of the other part of striatum,which suggests that the func-tion of the MrD may be different from that of the rest of the striatum. 展开更多
关键词 STRIATUM MARGINAL DIVISION substance P synapses ANIMAL RATS
在线阅读 下载PDF
A Flexible Tribotronic Artificial Synapse with Bioinspired Neurosensory Behavior 被引量:1
13
作者 Jianhua Zeng Junqing Zhao +5 位作者 Tianzhao Bu Guoxu Liu Youchao Qi Han Zhou Sicheng Dong Chi Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期46-60,共15页
As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)wit... As key components of artificial afferent nervous systems,synaptic devices can mimic the physiological synaptic behaviors,which have attracted extensive attentions.Here,a flexible tribotronic artificial synapse(TAS)with bioinspired neurosensory behavior is developed.The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor,which can tune the carriers transport through the migration/accumulation of ions.The TAS successfully demonstrates a series of synaptic behaviors by external stimuli,such as excitatory postsynaptic current,paired-pulse facilitation,and the hierarchical memory process from sensory memory to short-term memory and long-term memory.Moreover,the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm,and the TAS still exhibits excellent durability after 1000 bending cycles.Finally,Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell,respectively.This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems,which is great significance to the practical application of artificial limbs,robotics,and bionics in future. 展开更多
关键词 Flexible electronics Tribotronics Artificial synapses Contact electrification Neurosensory behavior
在线阅读 下载PDF
Progress of Materials and Devices for Neuromorphic Vision Sensors 被引量:10
14
作者 Sung Woon Cho Chanho Jo +1 位作者 Yong-Hoon Kim Sung Kyu Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期239-271,共33页
The latest developments in bio-inspired neuromorphic vision sensors can be summarized in 3 keywords:smaller,faster,and smarter.(1)Smaller:Devices are becoming more compact by integrating previously separated component... The latest developments in bio-inspired neuromorphic vision sensors can be summarized in 3 keywords:smaller,faster,and smarter.(1)Smaller:Devices are becoming more compact by integrating previously separated components such as sensors,memory,and processing units.As a prime example,the transition from traditional sensory vision computing to in-sensor vision computing has shown clear benefits,such as simpler circuitry,lower power consumption,and less data redundancy.(2)Swifter:Owing to the nature of physics,smaller and more integrated devices can detect,process,and react to input more quickly.In addition,the methods for sensing and processing optical information using various materials(such as oxide semiconductors)are evolving.(3)Smarter:Owing to these two main research directions,we can expect advanced applications such as adaptive vision sensors,collision sensors,and nociceptive sensors.This review mainly focuses on the recent progress,working mechanisms,image pre-processing techniques,and advanced features of two types of neuromorphic vision sensors based on near-sensor and in-sensor vision computing methodologies. 展开更多
关键词 In-sensor computing Near-sensor computing Neuromorphic vision sensor Optoelectronic synaptic circuit Optoelectronic synapse
在线阅读 下载PDF
High-performance synaptic transistors for neuromorphic computing 被引量:2
15
作者 Hai Zhong Qin-Chao Sun +8 位作者 Guo Li Jian-Yu Du He-Yi Huang Er-Jia Guo Meng He Can Wang Guo-Zhen Yang Chen Ge Kui-Juan Jin 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期1-14,共14页
The further development of traditional von Neumann-architecture computers is limited by the breaking of Moore’s law and the von Neumann bottleneck, which make them unsuitable for future high-performance artificial in... The further development of traditional von Neumann-architecture computers is limited by the breaking of Moore’s law and the von Neumann bottleneck, which make them unsuitable for future high-performance artificial intelligence (AI)systems. Therefore, new computing paradigms are desperately needed. Inspired by the human brain, neuromorphic computing is proposed to realize AI while reducing power consumption. As one of the basic hardware units for neuromorphic computing, artificial synapses have recently aroused worldwide research interests. Among various electronic devices that mimic biological synapses, synaptic transistors show promising properties, such as the ability to perform signal transmission and learning simultaneously, allowing dynamic spatiotemporal information processing applications. In this article, we provide a review of recent advances in electrolyte-and ferroelectric-gated synaptic transistors. Their structures, materials,working mechanisms, advantages, and disadvantages will be presented. In addition, the challenges of developing advanced synaptic transistors are discussed. 展开更多
关键词 SYNAPTIC transistor artificial SYNAPSE SYNAPTIC PLASTICITY electrolyte GATING FERROELECTRIC GATING
在线阅读 下载PDF
新建演播室周边设备的选用 被引量:1
16
作者 赵格生 李菊彦 《广播与电视技术》 2009年第2期78-78,80,共2页
文章介绍了视音频信号处理系统的相关概念,并结合演播室系统在周边设备选型方面的思路,对所采用的艾崧AXON神经元系列的特点和应用经验做了介绍。
关键词 周边设备 演播室系统 信号处理 神经元 SYNAPSE
在线阅读 下载PDF
An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing 被引量:1
17
作者 Qing Hu Boyi Dong +5 位作者 Lun Wang Enming Huang Hao Tong Yuhui He Ming Xu Xiangshui Miao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期49-54,共6页
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continu... Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition. 展开更多
关键词 superlattice-like phase-change material artificial synapse low-power consumption
在线阅读 下载PDF
河南电视台高标清兼容新闻演播室系统的设计与实施 被引量:3
18
作者 张继伟 《现代电视技术》 2012年第1期38-42,共5页
介绍了河南电视台高标清兼容新闻演播室系统建设背景及需求,分析了系统兼容性的设计思路与选择,对系统关键设备选型进行了说明。
关键词 高/标清兼容系统 在线播出系统 网络回采工作站 神经元(Synapse) 智能模块化信号处理系统 网络化数字直播调音台
在线阅读 下载PDF
Artificial synaptic behavior of the SBT-memristor
19
作者 Gang Dou Ming-Long Dou +1 位作者 Ren-Yuan Liu Mei Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期600-604,共5页
The synapse of human brain neurons is not only the transmission channel of information,but also the basic unit of human brain learning and information storing.The artificial synapse is constructed based on the Sr_(0.9... The synapse of human brain neurons is not only the transmission channel of information,but also the basic unit of human brain learning and information storing.The artificial synapse is constructed based on the Sr_(0.97)Ba_(0.03)TiO_(3-x)(SBT)memristor,which realizes the short-term and long-term plasticity of the synapse.The experiential learning and non-associative learning behavior in accordance with human cognitive rules are realized by using the SBT-memristor-based synapse.The process of synaptic habituation and sensitization is analyzed.This study provides insightful guidance for realization of artificial synapse and the development of artificial neural network. 展开更多
关键词 MEMRISTOR artificial synapse synaptic plasticity experiential learning non-associative learning
在线阅读 下载PDF
Diffusive field coupling-induced synchronization between neural circuits under energy balance
20
作者 王亚 孙国平 任国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期255-259,共5页
When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic fi... When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance. 展开更多
关键词 field coupling SYNCHRONIZATION neural circuits Hamilton energy synapse connection
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部