A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a p...A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.展开更多
Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-...Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.展开更多
Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system ca...Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.展开更多
A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homo...A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.展开更多
The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and proce...The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and processes its own state information with time-varying self-delay respectively. The state time-delay feedback is introduced into the existing consensus protocol to begenerate an improved protocol. Then a sufficient condition is derived which can make the system with time-varying self-delays achieve the consensus. On this basis, a specific form of consensus equilibrium influenced by the initial states of agents, time-delays and state feedback intensity is figured out. In addition, the multi-agent consensus is considered with time-varying topologies. Finally, simulations are presented to il ustrate the validity of theoretical results.展开更多
The distributed leadless consensus problem for multiple quadrotor systems under fixed and switching topologies is investigated. The objective is to design protocols achieving consensus for networked quadrotors' posit...The distributed leadless consensus problem for multiple quadrotor systems under fixed and switching topologies is investigated. The objective is to design protocols achieving consensus for networked quadrotors' positions and attitudes. Because the model of a quadrotor is a strong high-order nonlinear coupling system, the approach of feedback linearization is employed to transform the model into a group of four linear subsystems among which there is no coupling. Then, a consensus algorithm is proposed which consists of a local feedback controller and interactions from the finite neighbors under fixed undirected topologies. Especially, the problem of choosing the parameters in the consensus algo-rithm is also addressed, enlightened by the results of the robust control theory. Furthermore, it is proved that the proposed algo-rithm also guarantees the consensus under undirected switching topologies. Simulation results show the effectiveness of the pro- posed algorithm.展开更多
This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagn...This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.展开更多
In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(M...In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.展开更多
Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finit...Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.展开更多
As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagno...As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.展开更多
In this paper,the optimal control of non-linear switching system is investigated without knowing the system dynamics.First,the Hamilton-Jacobi-Bellman(HJB)equation is derived with the consideration of hybrid action sp...In this paper,the optimal control of non-linear switching system is investigated without knowing the system dynamics.First,the Hamilton-Jacobi-Bellman(HJB)equation is derived with the consideration of hybrid action space.Then,a novel data-based hybrid Q-learning(HQL)algorithm is proposed to find the optimal solution in an iterative manner.In addition,the theoretical analysis is provided to illustrate the convergence and optimality of the proposed algorithm.Finally,the algorithm is implemented with the actor-critic(AC)structure,and two linear-in-parameter neural networks are utilized to approximate the functions.Simulation results validate the effectiveness of the data-driven method.展开更多
The systematical and scalable frameworks were provided for estimating the blocking probabilities under asynchronous traffic in optical burst switching(OBS) nodes with limited wavelength conversion capability(LWCC) . T...The systematical and scalable frameworks were provided for estimating the blocking probabilities under asynchronous traffic in optical burst switching(OBS) nodes with limited wavelength conversion capability(LWCC) . The relevant system architectures of limited range and limited number of wavelength converters(WCs) deployed by a share-per-fiber(SPF) mode were developed,and the novel theoretical analysis of node blocking probability was derived by combining the calculation of discouraged arrival rate in a birth-death process and two-dimensional Markov chain model of SPF. The simulation results on single node performance verify the accuracy and effectiveness of the analysis models. Under most scenarios,it is difficult to distinguish the plots generated by the analysis and simulation. As the conversion degree increases,the accuracy of the analysis model worsens slightly. However,the utmost error on burst loss probability is far less than one order of magnitude and hence,still allows for an accurate estimate. Some results are of actual significance to the construction of next-generation commercial OBS backbones.展开更多
The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based ...The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.展开更多
A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and...A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and best-effort traffic.Off-line stage is to determine the shortest path set disjointed path(DP) database for real-time traffic,and to identify link critical value by traffic profile information of real-time traffic and DP database.On-line stage is at first to select route in the DP database for real-time traffic,if there is no path to meet the needs,the dynamic routing will be operated.On-line routing algorithm chooses the relatively short path for real-time traffic to meet their bandwidth requirements,and for best-effort traffic it chooses a lighter load path.The simulation results show that compared with the dynamic online routing algorithm(DORA) and constrained shortest path first(CSPF) algorithm,the new algorithm can significantly improve network throughput and reduce the average path length of real-time traffic.This guarantees quality of service(QoS) of real-time traffic while improving the utilization of network resources.展开更多
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.
基金supported by the National Outstanding Youth Science Foundation(61125306)the National Natural Science Foundation of Major Research Plan(91016004+2 种基金61034002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110092110020)the Scientific Research Foundation of Graduate School of Southeast University(YBJJ1103)
文摘A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method.
基金supported by the Fundamental Research Funds for the Central Universities(JUSRP11020)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20090093120006)
文摘Leader-following stationary consensus problem is investigated for the second-order multi-agent systems with timevarying communication delay and switching topology. Based on Lyapunov-Krasovskii functional and Lyapunov-Razumikhin functions respectively, consensus criterions in the form of linear matrix inequality (LMI) are obtained for the system with time-varying communication delays under static interconnection topology con- verging to the leader's states. Moreover, the delay-dependent consensus criterion in the form of LMI is also obtained for the system with time-invariant communication delay and switching topologies by constructing Lyapunov-Krasovskii functional. Numerical simulations present the correctness of the results.
基金supported by the National Natural Science Foundation of China (71071020 60705036)Beijing Excellent Doctoral Dissertation Instructor Project of Humanities and Social Sciences(yb20091000701)
文摘Compared with the classical Markov repairable system, the Markov repairable system with stochastic regimes switching introduced in the paper provides a more realistic description of the practical system. The system can be used to model the dynamics of a repairable system whose performance regimes switch according to the external conditions. For example, to satisfy the demand variation that is typical for the power and communication systems and reduce the cost, these systems usually adjust their operating regimes. The transition rate matrices under distinct operating regimes are assumed to be different and the sojourn times in distinct regimes are governed by a finite state Markov chain. By using the theory of Markov process, Ion channel theory, and Laplace transforms, the up time of the system are studied. A numerical example is given to illustrate the obtained results. The effect of sojourn times in distinct regimes on the availability and the up time are also discussed in the numerical example.
基金supported by the National Natural Science Foundation of China(61102158)the China Postdoctoral Science Foundation(2011M500667)
文摘A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.
基金supported by the National Natural Science Foundation of China(6087405361034006)
文摘The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and processes its own state information with time-varying self-delay respectively. The state time-delay feedback is introduced into the existing consensus protocol to begenerate an improved protocol. Then a sufficient condition is derived which can make the system with time-varying self-delays achieve the consensus. On this basis, a specific form of consensus equilibrium influenced by the initial states of agents, time-delays and state feedback intensity is figured out. In addition, the multi-agent consensus is considered with time-varying topologies. Finally, simulations are presented to il ustrate the validity of theoretical results.
基金supported by the National Natural Science Foundation of China(61074031)
文摘The distributed leadless consensus problem for multiple quadrotor systems under fixed and switching topologies is investigated. The objective is to design protocols achieving consensus for networked quadrotors' positions and attitudes. Because the model of a quadrotor is a strong high-order nonlinear coupling system, the approach of feedback linearization is employed to transform the model into a group of four linear subsystems among which there is no coupling. Then, a consensus algorithm is proposed which consists of a local feedback controller and interactions from the finite neighbors under fixed undirected topologies. Especially, the problem of choosing the parameters in the consensus algo-rithm is also addressed, enlightened by the results of the robust control theory. Furthermore, it is proved that the proposed algo-rithm also guarantees the consensus under undirected switching topologies. Simulation results show the effectiveness of the pro- posed algorithm.
基金supported by the National Natural Science Foundation of China(1140503561004130+4 种基金60834005)the Natural Science Foundation of Heilongjiang Province of China(F201414)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBHQ15034)the Stable Supporting Fund of Acoustic Science and Technology Laboratory(JCKYS2019604SSJS002)the Fundamental Research Funds for the Central Universities。
文摘This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.
基金supported by the Scientific Research Innovation Development Foundation of Army Engineering University((2019)71).
文摘In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.
基金supported in part by the National Natural Science Foundation of China(60374015)
文摘Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.
基金Tianjin Natunal science Foundation of China(No:05YFSYSF033)
文摘As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.
基金supported by the National Key R&D Program of China(2018AAA0101400)the Natural Science Foundation of Jiangsu Province of China(BK20202006)the National Natural Science Foundation of China(61921004,62173251).
文摘In this paper,the optimal control of non-linear switching system is investigated without knowing the system dynamics.First,the Hamilton-Jacobi-Bellman(HJB)equation is derived with the consideration of hybrid action space.Then,a novel data-based hybrid Q-learning(HQL)algorithm is proposed to find the optimal solution in an iterative manner.In addition,the theoretical analysis is provided to illustrate the convergence and optimality of the proposed algorithm.Finally,the algorithm is implemented with the actor-critic(AC)structure,and two linear-in-parameter neural networks are utilized to approximate the functions.Simulation results validate the effectiveness of the data-driven method.
基金Project(60632010) supported by the National Natural Science Foundation of China
文摘The systematical and scalable frameworks were provided for estimating the blocking probabilities under asynchronous traffic in optical burst switching(OBS) nodes with limited wavelength conversion capability(LWCC) . The relevant system architectures of limited range and limited number of wavelength converters(WCs) deployed by a share-per-fiber(SPF) mode were developed,and the novel theoretical analysis of node blocking probability was derived by combining the calculation of discouraged arrival rate in a birth-death process and two-dimensional Markov chain model of SPF. The simulation results on single node performance verify the accuracy and effectiveness of the analysis models. Under most scenarios,it is difficult to distinguish the plots generated by the analysis and simulation. As the conversion degree increases,the accuracy of the analysis model worsens slightly. However,the utmost error on burst loss probability is far less than one order of magnitude and hence,still allows for an accurate estimate. Some results are of actual significance to the construction of next-generation commercial OBS backbones.
基金Supported by National Natural Science Foundation of P.R.China(60174001)National Natural Science Foundation of Beijing(4022007)
文摘The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.
基金Project(2003AA781011) supported by the National High-Tech Research and Development of Program of China Project(20072022) supported by Science and Technology Foundation of Liaoning Province,China
文摘A new coarse-grained differentiated least interference routing algorithm(CDLI) with DiffServ-Aware was presented.This algorithm is composed of off-line and on-line stages,taking into account both real-time traffic and best-effort traffic.Off-line stage is to determine the shortest path set disjointed path(DP) database for real-time traffic,and to identify link critical value by traffic profile information of real-time traffic and DP database.On-line stage is at first to select route in the DP database for real-time traffic,if there is no path to meet the needs,the dynamic routing will be operated.On-line routing algorithm chooses the relatively short path for real-time traffic to meet their bandwidth requirements,and for best-effort traffic it chooses a lighter load path.The simulation results show that compared with the dynamic online routing algorithm(DORA) and constrained shortest path first(CSPF) algorithm,the new algorithm can significantly improve network throughput and reduce the average path length of real-time traffic.This guarantees quality of service(QoS) of real-time traffic while improving the utilization of network resources.