The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of a...The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems. Then the modeling methods for swarm robotics are described by a list of several widely used swarm robotics entity projects and simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.展开更多
For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory n...For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.展开更多
为推动名优茶叶采摘自动化,茶叶采摘机械臂快速、高质量路径规划是实现高效采摘的关键。针对传统群智能优化算法在茶园复杂环境及约束条件下存在的路径质量差、算法耗时长及规划不稳定等问题。提出一种改进豪猪优化器(Crested Porcupine...为推动名优茶叶采摘自动化,茶叶采摘机械臂快速、高质量路径规划是实现高效采摘的关键。针对传统群智能优化算法在茶园复杂环境及约束条件下存在的路径质量差、算法耗时长及规划不稳定等问题。提出一种改进豪猪优化器(Crested Porcupine Optimizer,CPO)的机械臂路径规划方法。通过引入动态种群收缩策略,在迭代过程中缩减种群规模,减少计算成本,使用末位淘汰机制及对算法结构改良提升全局寻优能力,增加个体多样性,并引入动态调整因子λ_t改进第一防御策略,平衡算法在不同阶段的探索与优化比例。通过Lindenmayer系统及UR5机械臂构建茶叶采摘仿真场景,进行仿真路径规划实验。在10个不同环境中,改进CPO算法相比原算法,平均计算时间减少4.7%,平均路径长度缩短0.78%;与灰狼优化(Grey Wolf Optimizer,GWO)、蜣螂优化(Dung Beetle Optimizer,DBO)、快速扩展随机树(Rapidly-exploring Random Trees,RRT)等算法相比,平均耗时相较GWO、DBO分别下降25%、24%,路径长度相较RRT算法减少23%、平均规划成功率高28%。改进CPO算法相较其他算法耗时更短,同时具有更好的路径质量及规划成功率,验证了其在茶叶采摘机械臂路径规划问题上的实用价值。展开更多
基金Sponsored by National Natural Science Foundation of China under Grant( 61170057,60875080)
文摘The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems. Then the modeling methods for swarm robotics are described by a list of several widely used swarm robotics entity projects and simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.
基金supported in part by National Key R&D Program of China(Grant Nos.2021ZD0111501,2021ZD0111502)the Key Laboratory of Digital Signal and Image Processing of Guangdong Province+8 种基金the Key Laboratory of Intelligent Manufacturing Technology(Shantou University)Ministry of Education,the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917144960530)the Project of Educational Commission of Guangdong Province of China(Grant No.2017KZDXM032)the State Key Lab of Digital Manufacturing Equipment&Technology(grant number DMETKF2019020)National Natural Science Foundation of China(Grant Nos.62176147,62002369)STU Scientific Research Foundation for Talents(Grant No.NTF21001)Science and Technology Planning Project of Guangdong Province of China(Grant Nos.2019A050520001,2021A0505030072,2022A1515110660)Science and Technology Special Funds Project of Guangdong Province of China(Grant Nos.STKJ2021176,STKJ2021019)Guangdong Special Support Program for Outstanding Talents(Grant No.2021JC06X549)。
文摘For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible.
文摘为推动名优茶叶采摘自动化,茶叶采摘机械臂快速、高质量路径规划是实现高效采摘的关键。针对传统群智能优化算法在茶园复杂环境及约束条件下存在的路径质量差、算法耗时长及规划不稳定等问题。提出一种改进豪猪优化器(Crested Porcupine Optimizer,CPO)的机械臂路径规划方法。通过引入动态种群收缩策略,在迭代过程中缩减种群规模,减少计算成本,使用末位淘汰机制及对算法结构改良提升全局寻优能力,增加个体多样性,并引入动态调整因子λ_t改进第一防御策略,平衡算法在不同阶段的探索与优化比例。通过Lindenmayer系统及UR5机械臂构建茶叶采摘仿真场景,进行仿真路径规划实验。在10个不同环境中,改进CPO算法相比原算法,平均计算时间减少4.7%,平均路径长度缩短0.78%;与灰狼优化(Grey Wolf Optimizer,GWO)、蜣螂优化(Dung Beetle Optimizer,DBO)、快速扩展随机树(Rapidly-exploring Random Trees,RRT)等算法相比,平均耗时相较GWO、DBO分别下降25%、24%,路径长度相较RRT算法减少23%、平均规划成功率高28%。改进CPO算法相较其他算法耗时更短,同时具有更好的路径质量及规划成功率,验证了其在茶叶采摘机械臂路径规划问题上的实用价值。