Background: The successful treatment of military combat casualties with penetrating injuries is significantly dependent on the time needed to get the patient to an adequate treatment facility. Profound hypothermia ind...Background: The successful treatment of military combat casualties with penetrating injuries is significantly dependent on the time needed to get the patient to an adequate treatment facility. Profound hypothermia induced suspended animation for delayed resuscitation(SADR) is a novel approach for inducing cardiac arrest and buying additional time for such injuries. However, the time used to safely administer circulatory arrest(CA) is controversial. The goal of this study was to evaluate the safety of hypothermia-induced SADR over 90 and 120 min time intervals.Methods: Sixteen male BAMA minipigs were randomized into two groups: CA90 group(90 min, n =8) and CA120 group(120 min, n =8). Cannulation of the right common carotid arteries and internal jugular veins was performed to establish cardiopulmonary bypass for each animal. Through the perfusion of cold organ preservation solution(OPS), cardioplegia and profound hypothermia(15℃) were induced. After CA, cardiopumonary bypass(CPB) was restarted, and the animals were gradually re-warmed and resuscitated. The animals were assisted with ventilators until spontaneous breathing was achieved. The index of hemodynamic perioperative serum chemistry values [alanine transaminase(ALT), aspartate aminotransferase(AST), creatinine(CR), lactic dehydrogenase(LDH) and troponin T(TnT)] and survival were observed from pre-operation to 7 days post-operation.Results: Fifteen animals were enrolled in the experiment, while 1 animal in CA120 group died from surgical error. All 8 animals in CA90 group recovered, with only 1 animal displaying mild disability. However, in CA120 group, only 2 animals survived with severe disability, and the other 5 animals died after 2 days post-operation. In CA90 group, the perioperative serum chemistry values increased at 1 day post-operation(ALT 84.43±18.65 U/L; AST 88.99±23.19 U/L; Cr 87.90±24.49μmol/L; LDH 1894.13±322.26 U/L; TnT 0.849±0.135 ng/ml) but decreased to normal or almost normal levels at 7 days post-operation(ALT 52.48±9.04 U/L; AST 75.23±21.46 U/L; Cr 82.69±18.41μmol/L; LDH 944.67±834.32 U/L; TnT 0.336±0.076 ng/ml).Conclusion: Profound hypothermia-induced SADR is an effective method for inducing cardiac arrest. Our results indicate that inducing CA for 90 min(at 15℃) is safer than doing so for 120 min. Our results indicate that 120 min of CA at 15℃ is dangerous and can result in high mortality and severe neurological complications. Further experimentation is needed to determine whether 120 min of CA at temperatures lower than 15℃ can lead to safe recovery.展开更多
A biological sensing structure with a high-order mode(E^(y)_(21))is designed,which is composed of a suspended racetrack micro-resonator(SRTMR)and a microfluidic channel.The mode characteristics,coupling properties,and...A biological sensing structure with a high-order mode(E^(y)_(21))is designed,which is composed of a suspended racetrack micro-resonator(SRTMR)and a microfluidic channel.The mode characteristics,coupling properties,and sensing performances are simulated by using the finite element method(FEM).To analyze the mode confinement property,the confinement factors in the core and cladding of the suspended waveguide for the E^(x)_(11),E^(y)_(11),and E^(y)_(21) are calculated.The simulation results show that the refractive index(RI)sensitivity of the proposed sensing structure can be improved by using the high-order mode(Ey 21).The RI sensitivity for the E^(y)_(21) mode is~201 nm/RIU,which is twice to thrice higher than those for the E^(x)_(11) mode and the E^(y)_(11) mode.Considering a commercial spectrometer,the proposed sensing structure based on the SRTMR achieves a limit of detection(LOD)of -4.7×10^(-6) RIU.Combined with the microfluidic channel,the SRTMR can possess wide applications in the clinical diagnostic assays and biochemical detections.展开更多
The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are ob...The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are obtained. The double-front detonation and steady state of detonation wave of the mixed dust are analyzed. For the dust mixed RDX with density of 0.565kg/m3 and radius of 10μm as well as aluminum with density of 0.145kg/m3 and radius of 4μm, the detonation wave will reach a steady state at 23m. The effects of the size of aluminum on the detonation are analyzed. For constant radius of RDX particles with radius of 10μm, as the radius of aluminum particles is larger than 2.0 μm, the double-front detonation can be observed due to the different ignition distances and reaction rates of RDX and aluminum particles. As the radius of aluminum particles is larger, the velocity, pressure and temperature of detonation wave will be slower. The pressure at the Chapman-Jouguet (CJ) point also becomes lower. Comparing the detonation with single RDX dust, the pressure and temperature in the flow field of detonation of mixed dust are higher.展开更多
Metallic nanofilms are important components of nanoscale electronic circuits and nanoscale sensors.The accurate characterization of the thermophysical properties of nanofilms is very important for nanoscience and nano...Metallic nanofilms are important components of nanoscale electronic circuits and nanoscale sensors.The accurate characterization of the thermophysical properties of nanofilms is very important for nanoscience and nanotechnology.Currently,there is very little specific heat data for metallic nanofilms,and the existing measurements indicate distinct differences according to the nanofilm size.The present work reports the specific heats of 40-nm-thick suspended platinum nanofilms at 80-380 K and -5 ×10-(-4) Pa using the 3 ω method.Over 80-380 K,the specific heats of the Pt nanofilms range from 166-304 J/(kg·K),which are 1.65-2.60 times the bulk values,indicating significant size effects.These results are useful for both scientific research in nanoscale thermophysics and evaluating the transient thermal response of nanoscale devices.展开更多
As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers(SCFs) are designed with shifted zero-dispersion wavelengths(ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrodin...As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers(SCFs) are designed with shifted zero-dispersion wavelengths(ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrodinger equation is used to numerically compare supercontinuum(SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge(LWE), the power proportion in the long-wavelength region(PPL), and spectral flatness(SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of - 13 μm and PPL up to ~72%. For As2Se3 SCFs, the LWE of 15.5 μm and the highest PPL of ~ 87% can be achieved in a 10 mm-long fiber with ZDW of 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.展开更多
This paper reports that a novel type of suspended ZnO nanowire field-effect transistors (FETs) were successfully fabricated using a photolithography process, and their electrical properties were characterized by I-V...This paper reports that a novel type of suspended ZnO nanowire field-effect transistors (FETs) were successfully fabricated using a photolithography process, and their electrical properties were characterized by I-V measurements. Single-crystalline ZnO nanowires were synthesized by a hydrothermal method, they were used as a suspended ZnO nanowire channel of back-gate field-effect transistors (FET). The fabricated suspended nanowire FETs showed a pchannel depletion mode, exhibited high on-off current ratio of -10^5. When VDS = 2.5V, the peak transconductances of the suspended FETs were 0.396 μS, the oxide capacitance was found to be 1.547 fF, the pinch-off voltage VTH was about 0.6 V, the electron mobility was on average 50.17cm2/Vs. The resistivity of the ZnO nanowire channel was estimated to be 0.96 × 10^2 Ω cm at VGS = 0 V. These characteristics revealed that the suspended nanowire FET fabricated by the photolithography process had excellent performance. Better contacts between the ZnO nanowire and metal electrodes could be improved through annealing and metal deposition using a focused ion beam.展开更多
For photon detection, superconducting transition-edge sensor(TES) micro-calorimeters are excellent energy-resolving devices. In this study, we report our recent work in developing Ti-/Au-based TES. The Ti/Au TES devic...For photon detection, superconducting transition-edge sensor(TES) micro-calorimeters are excellent energy-resolving devices. In this study, we report our recent work in developing Ti-/Au-based TES. The Ti/Au TES devices were designed and implemented with a thickness ratio of 1:1 and different suspended structures using micromachining technology. The characteristics were evaluated and analyzed, including surface morphology, 3 D deformation of suspended Ti/Au TES device structure, I–V characteristics, and low-temperature superconductivity. The results showed that the surface of Ti/Au has good homogeneity and the surface roughness of Ti/Au is significantly increased compared with the substrate. The structure of Ti/Au bilayer film significantly affects the deformation of suspended devices, but the deformation does not affect the I–V characteristics of the devices. For devices with the Ti/Au bilayer(150 μm × 150 μm) and beams(100 μm × 25 μm), the transition temperature(T;) is 253 m K with a width of 6 m K, and the value of the temperature sensitivity α is 95.1.展开更多
In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix...In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix are stressed. The FEM equations of mechanics characteristics, natural frequency and main mode are set up based on the first order matrix perturbation theory. Applicantion of the proposed model to analyze a real arch bridge proved the improvement in the simulation precision of dynamical characteristics of the arch bridge by considering the effects of suspender length variation.展开更多
The lorentz force-type magnetic bearing(LFTMB)with good linearity is suitable for the high-precision deflection control of the magnetically suspended gyrowheel(MSGW). Two kinds of novel implicit LFTMBs are proposed in...The lorentz force-type magnetic bearing(LFTMB)with good linearity is suitable for the high-precision deflection control of the magnetically suspended gyrowheel(MSGW). Two kinds of novel implicit LFTMBs are proposed in allusion to the poor magnetic flux density uniformity of the existing explicit LFTMB. The improvement of uniformity is realized under the paramagnetic contribution of magnetic ring. Their structures are introduced,the mathematical models are established based on the equivalent magnetic circuit method and the magnetic fields are analyzed by the finite element method based on the design parameters. Simulation results indicate that the magnetic flux density uniformity of implicit LFTMBs is superior to the traditional explicit LFTMB. Furthermore,the implicit trapezoid LFTMB with double magnetic circuits is better than that of those with single magnetic circuit,in terms of the magnetic flux density uniformity and the magnetic flux density. The magnetic flux density of implicit trapezoid double magnetic circuits LFTMB is verified by the experiment. The error between the experimental results and the simulation results is within 5%,which shows that the implicit trapezoid double magnetic circuits LFTMB is promising to meet the high-precision agile maneuver requirement of the magnetically suspended gyrowheel.展开更多
Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factor...Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.展开更多
Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabric...Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al_(2)O_(3) gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.展开更多
The mechanism of the formation of a surprisingly long suspended liquid bridge subjected to a dc electric field has been intensively studied in the past few decades. However, the role of electrostriction and quantitati...The mechanism of the formation of a surprisingly long suspended liquid bridge subjected to a dc electric field has been intensively studied in the past few decades. However, the role of electrostriction and quantitative evaluation of surface tension in the bridge have not been evaluated. We present combined theoretical and experimental studies on this issue. Electrostriction is pointed out to be the driving force that pushes liquid upward against gravity and into the gap between two containers and forms the suspended bridge, which is within the framework of the Maxwell pressure tensor. Through a comparison between experiment and theory, the surface tension is found to play an important role in holding the long suspended bridge. Ignorance of the surface tension leads to much smaller bridge length than the experimental values. The dynamic stability of the bridge with respect to its diameter, length and conductance is also discussed.展开更多
The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellit...The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.展开更多
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ...By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.展开更多
On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the str...On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the structure design and degradation of the shock absorber is discussed in the paper. From dynamic property, analysed the dynamic cause for degradation, the paper proposes a technical method of improving outer performance and a concept of critical velocity, and discusses what effects the critical velocity and the outer performance mance degradation has.展开更多
To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation consi...To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation considered. And the dynamic unbalance and impact turbulence excita tion from equipment were taken into account in a single stage and twostage vibration isolation system, respectively. Results show that the excitation transferred to carbody increases with suspension stiffness but decreases with the equipment mass increasing; the vibration transmission can be reduced by increasing the equipment mass or reduce the suspension stiffness. To avoid vibration resonance, the dynamic unbalance frequency of equipment should be out of the possible range of the carbody flexible modes, and a small stiffness should be applied to reduce the impact tur bulence. A small stiffness, however, would result in a large movement of the equipment which is limited by the static deflection requirement, while a great stiffness will transfer high frequency vibration. Therefore, a preferred stiffness should make the suspension frequency of equipment a bit greater than the first bending mode of carbody. Additionally, a 3D rigidflexible coupled dynamics model was built to verify the mathematical analysis, and they show good agreements. Results show that a twostage isolation could reduce the excitation transmission and make the vibration of carbody and equipment acceptable.展开更多
基金supported by the Major Project for Equipment Development of PLA in 2013(ASY135001)the National High Technology Research and Development Program of China(2015AA020312)
文摘Background: The successful treatment of military combat casualties with penetrating injuries is significantly dependent on the time needed to get the patient to an adequate treatment facility. Profound hypothermia induced suspended animation for delayed resuscitation(SADR) is a novel approach for inducing cardiac arrest and buying additional time for such injuries. However, the time used to safely administer circulatory arrest(CA) is controversial. The goal of this study was to evaluate the safety of hypothermia-induced SADR over 90 and 120 min time intervals.Methods: Sixteen male BAMA minipigs were randomized into two groups: CA90 group(90 min, n =8) and CA120 group(120 min, n =8). Cannulation of the right common carotid arteries and internal jugular veins was performed to establish cardiopulmonary bypass for each animal. Through the perfusion of cold organ preservation solution(OPS), cardioplegia and profound hypothermia(15℃) were induced. After CA, cardiopumonary bypass(CPB) was restarted, and the animals were gradually re-warmed and resuscitated. The animals were assisted with ventilators until spontaneous breathing was achieved. The index of hemodynamic perioperative serum chemistry values [alanine transaminase(ALT), aspartate aminotransferase(AST), creatinine(CR), lactic dehydrogenase(LDH) and troponin T(TnT)] and survival were observed from pre-operation to 7 days post-operation.Results: Fifteen animals were enrolled in the experiment, while 1 animal in CA120 group died from surgical error. All 8 animals in CA90 group recovered, with only 1 animal displaying mild disability. However, in CA120 group, only 2 animals survived with severe disability, and the other 5 animals died after 2 days post-operation. In CA90 group, the perioperative serum chemistry values increased at 1 day post-operation(ALT 84.43±18.65 U/L; AST 88.99±23.19 U/L; Cr 87.90±24.49μmol/L; LDH 1894.13±322.26 U/L; TnT 0.849±0.135 ng/ml) but decreased to normal or almost normal levels at 7 days post-operation(ALT 52.48±9.04 U/L; AST 75.23±21.46 U/L; Cr 82.69±18.41μmol/L; LDH 944.67±834.32 U/L; TnT 0.336±0.076 ng/ml).Conclusion: Profound hypothermia-induced SADR is an effective method for inducing cardiac arrest. Our results indicate that inducing CA for 90 min(at 15℃) is safer than doing so for 120 min. Our results indicate that 120 min of CA at 15℃ is dangerous and can result in high mortality and severe neurological complications. Further experimentation is needed to determine whether 120 min of CA at temperatures lower than 15℃ can lead to safe recovery.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075057)Ph.D.Program of Henan Normal University,China(Grant Nos.5101239170010 and gd17167).
文摘A biological sensing structure with a high-order mode(E^(y)_(21))is designed,which is composed of a suspended racetrack micro-resonator(SRTMR)and a microfluidic channel.The mode characteristics,coupling properties,and sensing performances are simulated by using the finite element method(FEM).To analyze the mode confinement property,the confinement factors in the core and cladding of the suspended waveguide for the E^(x)_(11),E^(y)_(11),and E^(y)_(21) are calculated.The simulation results show that the refractive index(RI)sensitivity of the proposed sensing structure can be improved by using the high-order mode(Ey 21).The RI sensitivity for the E^(y)_(21) mode is~201 nm/RIU,which is twice to thrice higher than those for the E^(x)_(11) mode and the E^(y)_(11) mode.Considering a commercial spectrometer,the proposed sensing structure based on the SRTMR achieves a limit of detection(LOD)of -4.7×10^(-6) RIU.Combined with the microfluidic channel,the SRTMR can possess wide applications in the clinical diagnostic assays and biochemical detections.
文摘The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are obtained. The double-front detonation and steady state of detonation wave of the mixed dust are analyzed. For the dust mixed RDX with density of 0.565kg/m3 and radius of 10μm as well as aluminum with density of 0.145kg/m3 and radius of 4μm, the detonation wave will reach a steady state at 23m. The effects of the size of aluminum on the detonation are analyzed. For constant radius of RDX particles with radius of 10μm, as the radius of aluminum particles is larger than 2.0 μm, the double-front detonation can be observed due to the different ignition distances and reaction rates of RDX and aluminum particles. As the radius of aluminum particles is larger, the velocity, pressure and temperature of detonation wave will be slower. The pressure at the Chapman-Jouguet (CJ) point also becomes lower. Comparing the detonation with single RDX dust, the pressure and temperature in the flow field of detonation of mixed dust are higher.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51327001 and 51636002)supported by CREST,JST,and JSPS KAKENHI(Grant Nos.16H04280,26289047,16K14174,and 16K06126)
文摘Metallic nanofilms are important components of nanoscale electronic circuits and nanoscale sensors.The accurate characterization of the thermophysical properties of nanofilms is very important for nanoscience and nanotechnology.Currently,there is very little specific heat data for metallic nanofilms,and the existing measurements indicate distinct differences according to the nanofilm size.The present work reports the specific heats of 40-nm-thick suspended platinum nanofilms at 80-380 K and -5 ×10-(-4) Pa using the 3 ω method.Over 80-380 K,the specific heats of the Pt nanofilms range from 166-304 J/(kg·K),which are 1.65-2.60 times the bulk values,indicating significant size effects.These results are useful for both scientific research in nanoscale thermophysics and evaluating the transient thermal response of nanoscale devices.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.61435003,61377042,61505024,and 61421002)Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks,China(Grant No.2015GZKF004)+1 种基金Open Found of Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,China(Grant No.SKLSFO2014-07)Open Fund of Science and Technology on Solid-State Laser Laboratory,China(Grant No.H04010501W2015000604)
文摘As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers(SCFs) are designed with shifted zero-dispersion wavelengths(ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrodinger equation is used to numerically compare supercontinuum(SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge(LWE), the power proportion in the long-wavelength region(PPL), and spectral flatness(SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of - 13 μm and PPL up to ~72%. For As2Se3 SCFs, the LWE of 15.5 μm and the highest PPL of ~ 87% can be achieved in a 10 mm-long fiber with ZDW of 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.
文摘This paper reports that a novel type of suspended ZnO nanowire field-effect transistors (FETs) were successfully fabricated using a photolithography process, and their electrical properties were characterized by I-V measurements. Single-crystalline ZnO nanowires were synthesized by a hydrothermal method, they were used as a suspended ZnO nanowire channel of back-gate field-effect transistors (FET). The fabricated suspended nanowire FETs showed a pchannel depletion mode, exhibited high on-off current ratio of -10^5. When VDS = 2.5V, the peak transconductances of the suspended FETs were 0.396 μS, the oxide capacitance was found to be 1.547 fF, the pinch-off voltage VTH was about 0.6 V, the electron mobility was on average 50.17cm2/Vs. The resistivity of the ZnO nanowire channel was estimated to be 0.96 × 10^2 Ω cm at VGS = 0 V. These characteristics revealed that the suspended nanowire FET fabricated by the photolithography process had excellent performance. Better contacts between the ZnO nanowire and metal electrodes could be improved through annealing and metal deposition using a focused ion beam.
文摘For photon detection, superconducting transition-edge sensor(TES) micro-calorimeters are excellent energy-resolving devices. In this study, we report our recent work in developing Ti-/Au-based TES. The Ti/Au TES devices were designed and implemented with a thickness ratio of 1:1 and different suspended structures using micromachining technology. The characteristics were evaluated and analyzed, including surface morphology, 3 D deformation of suspended Ti/Au TES device structure, I–V characteristics, and low-temperature superconductivity. The results showed that the surface of Ti/Au has good homogeneity and the surface roughness of Ti/Au is significantly increased compared with the substrate. The structure of Ti/Au bilayer film significantly affects the deformation of suspended devices, but the deformation does not affect the I–V characteristics of the devices. For devices with the Ti/Au bilayer(150 μm × 150 μm) and beams(100 μm × 25 μm), the transition temperature(T;) is 253 m K with a width of 6 m K, and the value of the temperature sensitivity α is 95.1.
基金Supported by the Key Teacher Foundation of Chongqing University (No. 717411067)
文摘In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix are stressed. The FEM equations of mechanics characteristics, natural frequency and main mode are set up based on the first order matrix perturbation theory. Applicantion of the proposed model to analyze a real arch bridge proved the improvement in the simulation precision of dynamical characteristics of the arch bridge by considering the effects of suspender length variation.
基金supported by Beijing Municipal Natural Science Foundation (General Program) (No. 3212004)Cultivation Project of Important Scientific Research Achievements of Beijing Institute of Petrochemical Technology(No. BIPTACF-007)
文摘The lorentz force-type magnetic bearing(LFTMB)with good linearity is suitable for the high-precision deflection control of the magnetically suspended gyrowheel(MSGW). Two kinds of novel implicit LFTMBs are proposed in allusion to the poor magnetic flux density uniformity of the existing explicit LFTMB. The improvement of uniformity is realized under the paramagnetic contribution of magnetic ring. Their structures are introduced,the mathematical models are established based on the equivalent magnetic circuit method and the magnetic fields are analyzed by the finite element method based on the design parameters. Simulation results indicate that the magnetic flux density uniformity of implicit LFTMBs is superior to the traditional explicit LFTMB. Furthermore,the implicit trapezoid LFTMB with double magnetic circuits is better than that of those with single magnetic circuit,in terms of the magnetic flux density uniformity and the magnetic flux density. The magnetic flux density of implicit trapezoid double magnetic circuits LFTMB is verified by the experiment. The error between the experimental results and the simulation results is within 5%,which shows that the implicit trapezoid double magnetic circuits LFTMB is promising to meet the high-precision agile maneuver requirement of the magnetically suspended gyrowheel.
基金Supported by the National Science and Technology Major Project(2016ZX05060-014)PetroChina Major Science and Technology Project(ZD2019-183-005)。
文摘Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0200400 and 2016YFA0200800)the National Natural Science Foundation of China(Grant Nos.61888102,12074420,and 11674387)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)Key Research Program of Frontier Sciences,Chinese Acdemy of Sciences(Grant No.QYZDJ-SSWSLH042).
文摘Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al_(2)O_(3) gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.
文摘The mechanism of the formation of a surprisingly long suspended liquid bridge subjected to a dc electric field has been intensively studied in the past few decades. However, the role of electrostriction and quantitative evaluation of surface tension in the bridge have not been evaluated. We present combined theoretical and experimental studies on this issue. Electrostriction is pointed out to be the driving force that pushes liquid upward against gravity and into the gap between two containers and forms the suspended bridge, which is within the framework of the Maxwell pressure tensor. Through a comparison between experiment and theory, the surface tension is found to play an important role in holding the long suspended bridge. Ignorance of the surface tension leads to much smaller bridge length than the experimental values. The dynamic stability of the bridge with respect to its diameter, length and conductance is also discussed.
文摘The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.
文摘By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias.
文摘On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the structure design and degradation of the shock absorber is discussed in the paper. From dynamic property, analysed the dynamic cause for degradation, the paper proposes a technical method of improving outer performance and a concept of critical velocity, and discusses what effects the critical velocity and the outer performance mance degradation has.
基金supported by the National Science and Technology Support Program of China (No. 2011 BAG10B01)the National Key Basic Research Program of China (No. 2011CB711100)+1 种基金the National Science and Technology Support Program of China (No. U1334206)the New Century Excellent Talents of Ministry of Education funded project (No. NCET-10-0664)
文摘To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation considered. And the dynamic unbalance and impact turbulence excita tion from equipment were taken into account in a single stage and twostage vibration isolation system, respectively. Results show that the excitation transferred to carbody increases with suspension stiffness but decreases with the equipment mass increasing; the vibration transmission can be reduced by increasing the equipment mass or reduce the suspension stiffness. To avoid vibration resonance, the dynamic unbalance frequency of equipment should be out of the possible range of the carbody flexible modes, and a small stiffness should be applied to reduce the impact tur bulence. A small stiffness, however, would result in a large movement of the equipment which is limited by the static deflection requirement, while a great stiffness will transfer high frequency vibration. Therefore, a preferred stiffness should make the suspension frequency of equipment a bit greater than the first bending mode of carbody. Additionally, a 3D rigidflexible coupled dynamics model was built to verify the mathematical analysis, and they show good agreements. Results show that a twostage isolation could reduce the excitation transmission and make the vibration of carbody and equipment acceptable.