In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices wi...In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices with a radius in the range of 30 mm. For this purpose, a fittable low temperature atmospheric pressure plasma source based on capacitively coupled multi-pin electrodes was set up and applied. Each single electrode generates a treatment spot of approximately 2 cm2 with a tunable power density of up to 1.4 W/cm2. The surface energy was evaluated by contact angle measurements. After treatment at a low energy density of 1.01 J/cm2, the polar fraction of the surface energy of the investigated polymers was increased by a factor of 3.3 to 132, depending on the polymer materials. It was shown that by applying the presented fittable plasma source, this effect is independent of the surface radius of the polymer sample.展开更多
基金supported by the European Regional Development Funds(EFRE)and the Workgroup Innovative Projects of Lower Saxony(AGiP) in the Frame of the Lower Saxony Innovation Network for Plasma Technology(NIP),Project Funding Reference Number W2-80029388
文摘In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices with a radius in the range of 30 mm. For this purpose, a fittable low temperature atmospheric pressure plasma source based on capacitively coupled multi-pin electrodes was set up and applied. Each single electrode generates a treatment spot of approximately 2 cm2 with a tunable power density of up to 1.4 W/cm2. The surface energy was evaluated by contact angle measurements. After treatment at a low energy density of 1.01 J/cm2, the polar fraction of the surface energy of the investigated polymers was increased by a factor of 3.3 to 132, depending on the polymer materials. It was shown that by applying the presented fittable plasma source, this effect is independent of the surface radius of the polymer sample.