The Changsha-Xiangtan-Zhuzhou City Group is a heavy industrial district and accepted as the serious pollution area in the Xiangjiang River basin.In this study,7 metals(Pb,Hg,Cd,As,Zn,Cu and Se)and the river water qual...The Changsha-Xiangtan-Zhuzhou City Group is a heavy industrial district and accepted as the serious pollution area in the Xiangjiang River basin.In this study,7 metals(Pb,Hg,Cd,As,Zn,Cu and Se)and the river water quality parameters including pH,dissolved oxygen(DO),Escherichia coli(E.coli),potassium permanganate index(CODMn),dichromate oxidizability(CODCr),five-day biochemical oxygen demand(BOD5),ammonia nitrogen(NH4+-N),total nitrogen(TN),total phosphorus(TP)and fluoride(F)in 18 sampling sites of the Changsha-Xiangtan-Zhuzhou section are monthly monitored in 2016,which is the year to step into the second stage of the“Xiangjiang River Heavy Metal Pollution Control Implementation Plan”.It is found that E.coli,TN and TP are the main pollutants in the Changsha-Zhuzhou-Xiangtan section,and the pollution of heavy metal is not serious but As with potential risk to local people especially children should be concerned.In addition,Xiangtan city is mainly featured with heavy metal pollution,while Zhuzhou and Changsha city are both featured with other pollutants from municipal domestic sewage.展开更多
Sixteen priority polycyclic aromatic hydrocarbons(PAHs) in surface water samples were analyzed by gas chromatograph-mass spectrometer(GC-MS) to study their distribution and characterizing sources.The water samples wer...Sixteen priority polycyclic aromatic hydrocarbons(PAHs) in surface water samples were analyzed by gas chromatograph-mass spectrometer(GC-MS) to study their distribution and characterizing sources.The water samples were collected from five sites(J1-J5) in the Jialing River of Chongqing downtown area from September 2009 to August 2010.The results demonstrate that the concentration of total PAHs in three samples upstream are relatively higher than those in other two sites downstream,with average concentration of total PAHs for each site ranging from 811.5 ng/L to 1585.8 ng/L.The 2,3 and 4-ring PAHs for sampling stations account for 13.0%,56.6% and 28.6%,respectively,in total PAHs.There are obvious tendencies of seasonal change for PAHs concentration in surface water.The PAHs concentration in April of wet season is 1 301.6 ng/L,which is 1.3 times the lowest amount of total PAHs in August of flood season.Ratios of specific PAH compounds were used to characterize the possible pollution sources.Experimental results indicate that the PAHs in surface water samples are primarily from pyrolytic PAHs because of factories along these sites,while the direct leakage of petroleum products may be significant for two sites,Jiahua Bridge(J4) and Huanghuayuan Bridge(J5),because of the wharf boat nearby.展开更多
[Objective]Surface water flooding is caused by heavy rainfall,which has been the main type of flooding in many cities across the world.Real urban environments are highly complex,and there are numerous parameters influ...[Objective]Surface water flooding is caused by heavy rainfall,which has been the main type of flooding in many cities across the world.Real urban environments are highly complex,and there are numerous parameters influencing the rainfall-runoff processes,such as road width,orientation and building coverage.The main objective is to perform a parametric study concerning the rainfall-runoff processes in complex urban environments,in order to gain a better understanding of the impact of urban characteristics on the surface runoff.[Methods]Realistic urban layouts are generated by means of procedural modelling software,which parameterises the urban configurations using 11 independent variables,including the averaged street length,street orientation,street curvature,major street width,minor street width,park coverage,etc.A shock-capturing TVD MacCormack shallow water equations solver is used to undertake a large number of computational simulations regarding the rainfall-runoff processes over realistic urban layouts.The dominating urban parameters that influence the time of concentration is unveiled,which characterises the timescale of the flood formation.[Results]In order to generalise the research outcomes,the obtained hydrographs at the outlet of the catchment are normalised so that they are independent of the catchment area,slope or rainfall intensity.The dimensionless time of concentration is thus only the functions of 12 independent parameters,including 11 parameters that governing the urban layouts and the Manning roughness coefficient of the ground.A sensitivity analysis,based on the multiple linear regression method,is performed on the 2,994 simulation cases to quantify the influence of each parameter.[Conclusion]The results show that the ground roughness and the building coverage ratio are the two most important factors that influence the urban flood formation.Their influences on the dimensionless timescale of the urban catchments’response to rainfall are quantified by empirical formulae.The research findings can provide useful guidelines for the design of future flood-resilient urban environments and the improvement of existing drainage systems in cities.展开更多
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this...The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.展开更多
The purpose of this research was to better understand the water quality status of the Xiangjiang River, China, and to evaluate the risks posed by the river water. Precisely, ten water quality parameters including p H,...The purpose of this research was to better understand the water quality status of the Xiangjiang River, China, and to evaluate the risks posed by the river water. Precisely, ten water quality parameters including p H, dissolved oxygen(DO), Escherichia coli(E. coli), potassium permanganate index(CODMn), dichromate oxidizability(CODCr), five-day biochemical oxygen demand(BOD5), ammonia nitrogen(NH4+-N), total phosphorus(TP) and fluoride(F-) as well as metal(loid)s(Pb, Hg, Cd, As, Zn, Cu and Se) were monitored monthly in 2016 at 12 sampling sites throughout the Hengyang section of the Xiangjiang River. Concentrations of all parameters were presented according to rainy and dry seasons. They were compared with Chinese surface water standards and WHO drinking water limits to assess the sustainability of the river water status. Principal component analysis(PCA) revealed different pollution sources in different seasons. Dual hierarchical cluster analysis(DHCA) was applied to further classify the water quality variables and sampling sites. Besides, a risk assessment was introduced to evaluate the carcinogenic and non-carcinogenic concerns of heavy metal(loid)s to human health. This research will help to optimize water monitoring locations and establish pollution reduction strategies on the preservation of public safety.展开更多
Most of China's wetland areas are located in Sanjiang Plain (Three River Basin). It's area has 207×104 hm2 of wet and low-lying farmland, of which 59% is cropped. During 1970s and 1980s, the Chinese gover...Most of China's wetland areas are located in Sanjiang Plain (Three River Basin). It's area has 207×104 hm2 of wet and low-lying farmland, of which 59% is cropped. During 1970s and 1980s, the Chinese government organized intensive scientific research into potential changes to existing natural resources conditions for this farmland. The aim was to make the water resources regime beneficial to crop production. Arterial drainage, field drainage and appropriate sub-soil treatments were suggested. The Four Waters converting mechanism and the estimation of the Four Water converting amount in wet and low-lying farmland were discussed in the paper.展开更多
Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organize...Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organized intensive scientific research into potential changes to existing natural resources conditions for these farmlands.The aim was to change the water resources regime to one that was beneficial to crop production.Arterial drainage,field drainage and appropriate sub soil treatments were required.The relation between plant products industry and the Four Waters distribution,also the main measures of the Four Waters converting in wet and low lying farmland were discussed in the paper.展开更多
Assessment of water quality by firefly algorithm based on BP neural network model(FA-BP model)is built.In this model,the evaluation index function is constructed by BP Artificial Neural Network Algorithm(BP model),and...Assessment of water quality by firefly algorithm based on BP neural network model(FA-BP model)is built.In this model,the evaluation index function is constructed by BP Artificial Neural Network Algorithm(BP model),and Firefly Algorithm(FA model)is introduced to optimize weight values and thresholds to find the optimal solution.Fuzzy Comprehensive Evaluation method,Grey Incidence Analysis Algorithm and FA-BP model will be applied to evaluate the water quality of the five main rivers in Lianyungang City including Longwei,Yudai,Dapu,Paidan,and Dongyan River.The results show that the Fuzzy Comprehensive Evaluation method is difficult to use for slight pollution rivers with several slightly over standard indexes.It will be easy to ignore the impact of extreme indexes by Grey Incidence Analysis Algorithm.FA-BP model solves the shortcomings of the two methods.The evaluation results provide an important reference for the formulation of reasonable measures.It is a relatively comprehensive evaluation method and has a good application prospect in water quality evaluation.展开更多
Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regu...Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regularity of its surface change, the suitable sectional dimensions of open channel or flood control work can be designed. Commonly, computation of non-uniform flow adopts the traditional methods by hand or by graphic method. The speed and precision of computation are restricted. In this paper, a software to calculate water surface profile is introduced. The software is put forward by using C++ .By means of interpolate method and dialogue between user and computer, we can calculate the water surface profile much more quickly and exactly.展开更多
基金Projects(2018YFC1903301,2018YFC1801805)supported by the National Key R&D Program of China
文摘The Changsha-Xiangtan-Zhuzhou City Group is a heavy industrial district and accepted as the serious pollution area in the Xiangjiang River basin.In this study,7 metals(Pb,Hg,Cd,As,Zn,Cu and Se)and the river water quality parameters including pH,dissolved oxygen(DO),Escherichia coli(E.coli),potassium permanganate index(CODMn),dichromate oxidizability(CODCr),five-day biochemical oxygen demand(BOD5),ammonia nitrogen(NH4+-N),total nitrogen(TN),total phosphorus(TP)and fluoride(F)in 18 sampling sites of the Changsha-Xiangtan-Zhuzhou section are monthly monitored in 2016,which is the year to step into the second stage of the“Xiangjiang River Heavy Metal Pollution Control Implementation Plan”.It is found that E.coli,TN and TP are the main pollutants in the Changsha-Zhuzhou-Xiangtan section,and the pollution of heavy metal is not serious but As with potential risk to local people especially children should be concerned.In addition,Xiangtan city is mainly featured with heavy metal pollution,while Zhuzhou and Changsha city are both featured with other pollutants from municipal domestic sewage.
基金Project(41101457) supported by the National Natural Science Foundation of ChinaProject(2009-122) supported by the Fund of Chongqing Municipal Construction Commission, China
文摘Sixteen priority polycyclic aromatic hydrocarbons(PAHs) in surface water samples were analyzed by gas chromatograph-mass spectrometer(GC-MS) to study their distribution and characterizing sources.The water samples were collected from five sites(J1-J5) in the Jialing River of Chongqing downtown area from September 2009 to August 2010.The results demonstrate that the concentration of total PAHs in three samples upstream are relatively higher than those in other two sites downstream,with average concentration of total PAHs for each site ranging from 811.5 ng/L to 1585.8 ng/L.The 2,3 and 4-ring PAHs for sampling stations account for 13.0%,56.6% and 28.6%,respectively,in total PAHs.There are obvious tendencies of seasonal change for PAHs concentration in surface water.The PAHs concentration in April of wet season is 1 301.6 ng/L,which is 1.3 times the lowest amount of total PAHs in August of flood season.Ratios of specific PAH compounds were used to characterize the possible pollution sources.Experimental results indicate that the PAHs in surface water samples are primarily from pyrolytic PAHs because of factories along these sites,while the direct leakage of petroleum products may be significant for two sites,Jiahua Bridge(J4) and Huanghuayuan Bridge(J5),because of the wharf boat nearby.
文摘[Objective]Surface water flooding is caused by heavy rainfall,which has been the main type of flooding in many cities across the world.Real urban environments are highly complex,and there are numerous parameters influencing the rainfall-runoff processes,such as road width,orientation and building coverage.The main objective is to perform a parametric study concerning the rainfall-runoff processes in complex urban environments,in order to gain a better understanding of the impact of urban characteristics on the surface runoff.[Methods]Realistic urban layouts are generated by means of procedural modelling software,which parameterises the urban configurations using 11 independent variables,including the averaged street length,street orientation,street curvature,major street width,minor street width,park coverage,etc.A shock-capturing TVD MacCormack shallow water equations solver is used to undertake a large number of computational simulations regarding the rainfall-runoff processes over realistic urban layouts.The dominating urban parameters that influence the time of concentration is unveiled,which characterises the timescale of the flood formation.[Results]In order to generalise the research outcomes,the obtained hydrographs at the outlet of the catchment are normalised so that they are independent of the catchment area,slope or rainfall intensity.The dimensionless time of concentration is thus only the functions of 12 independent parameters,including 11 parameters that governing the urban layouts and the Manning roughness coefficient of the ground.A sensitivity analysis,based on the multiple linear regression method,is performed on the 2,994 simulation cases to quantify the influence of each parameter.[Conclusion]The results show that the ground roughness and the building coverage ratio are the two most important factors that influence the urban flood formation.Their influences on the dimensionless timescale of the urban catchments’response to rainfall are quantified by empirical formulae.The research findings can provide useful guidelines for the design of future flood-resilient urban environments and the improvement of existing drainage systems in cities.
基金supported by Southern Marine Science and Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP229)。
文摘The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
基金Projects(2018YFC1801805,2018YFC1903301)supported by National Key R&D Program of ChinaProject(51825403)supported by National Science Fund for Distinguished Young Scholars,ChinaProject(2019SK2281)supported by Key R&D Program of Hunan Province,China。
文摘The purpose of this research was to better understand the water quality status of the Xiangjiang River, China, and to evaluate the risks posed by the river water. Precisely, ten water quality parameters including p H, dissolved oxygen(DO), Escherichia coli(E. coli), potassium permanganate index(CODMn), dichromate oxidizability(CODCr), five-day biochemical oxygen demand(BOD5), ammonia nitrogen(NH4+-N), total phosphorus(TP) and fluoride(F-) as well as metal(loid)s(Pb, Hg, Cd, As, Zn, Cu and Se) were monitored monthly in 2016 at 12 sampling sites throughout the Hengyang section of the Xiangjiang River. Concentrations of all parameters were presented according to rainy and dry seasons. They were compared with Chinese surface water standards and WHO drinking water limits to assess the sustainability of the river water status. Principal component analysis(PCA) revealed different pollution sources in different seasons. Dual hierarchical cluster analysis(DHCA) was applied to further classify the water quality variables and sampling sites. Besides, a risk assessment was introduced to evaluate the carcinogenic and non-carcinogenic concerns of heavy metal(loid)s to human health. This research will help to optimize water monitoring locations and establish pollution reduction strategies on the preservation of public safety.
文摘Most of China's wetland areas are located in Sanjiang Plain (Three River Basin). It's area has 207×104 hm2 of wet and low-lying farmland, of which 59% is cropped. During 1970s and 1980s, the Chinese government organized intensive scientific research into potential changes to existing natural resources conditions for this farmland. The aim was to make the water resources regime beneficial to crop production. Arterial drainage, field drainage and appropriate sub-soil treatments were suggested. The Four Waters converting mechanism and the estimation of the Four Water converting amount in wet and low-lying farmland were discussed in the paper.
文摘Most of China's wetland areas are located in the Sanjiang Plain.This area has 207×10 4 hm 2 of wet and low lying farmland,of which 59% is cropped.During the 1970s and 1980s,the Chinese government organized intensive scientific research into potential changes to existing natural resources conditions for these farmlands.The aim was to change the water resources regime to one that was beneficial to crop production.Arterial drainage,field drainage and appropriate sub soil treatments were required.The relation between plant products industry and the Four Waters distribution,also the main measures of the Four Waters converting in wet and low lying farmland were discussed in the paper.
基金Research Project of Lianyungang Association for Science and Technology(Lkxyb1907)Research Project of"333 Project"of Jiangsu Province(BRA2019245)Research Project of"521"Project of Lianyungang City(LYG52105-2018090)。
文摘Assessment of water quality by firefly algorithm based on BP neural network model(FA-BP model)is built.In this model,the evaluation index function is constructed by BP Artificial Neural Network Algorithm(BP model),and Firefly Algorithm(FA model)is introduced to optimize weight values and thresholds to find the optimal solution.Fuzzy Comprehensive Evaluation method,Grey Incidence Analysis Algorithm and FA-BP model will be applied to evaluate the water quality of the five main rivers in Lianyungang City including Longwei,Yudai,Dapu,Paidan,and Dongyan River.The results show that the Fuzzy Comprehensive Evaluation method is difficult to use for slight pollution rivers with several slightly over standard indexes.It will be easy to ignore the impact of extreme indexes by Grey Incidence Analysis Algorithm.FA-BP model solves the shortcomings of the two methods.The evaluation results provide an important reference for the formulation of reasonable measures.It is a relatively comprehensive evaluation method and has a good application prospect in water quality evaluation.
文摘Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regularity of its surface change, the suitable sectional dimensions of open channel or flood control work can be designed. Commonly, computation of non-uniform flow adopts the traditional methods by hand or by graphic method. The speed and precision of computation are restricted. In this paper, a software to calculate water surface profile is introduced. The software is put forward by using C++ .By means of interpolate method and dialogue between user and computer, we can calculate the water surface profile much more quickly and exactly.