Introduction
Owing to long-time running, more facilities including stations, pipelines, vessels have become corrosive and aged ,some process has grown old, it has exert more burden for the maintenance and repair.Simul...Introduction
Owing to long-time running, more facilities including stations, pipelines, vessels have become corrosive and aged ,some process has grown old, it has exert more burden for the maintenance and repair.Simultaneously, the fluid production rate, oil production rate and water injection rate has changed greatly so that the inflicts and problems from the established surface systems will become more obvious. Energy cost of production and running has increasing continuously. Capacity has been unbalance in systems and areas.展开更多
Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem s...Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
Atmospheric pressure plasma-liquid interactions exist in a variety of applications,including wastewater treatment,wound sterilization,and disinfection.In practice,the phenomenon of liquid surface depression will inevi...Atmospheric pressure plasma-liquid interactions exist in a variety of applications,including wastewater treatment,wound sterilization,and disinfection.In practice,the phenomenon of liquid surface depression will inevitably appear.The applied gas will cause a depression on the liquid surface,which will undoubtedly affect the plasma generation and further affect the application performance.However,the effect of liquid surface deformation on the plasma is still unclear.In this work,numerical models are developed to reveal the mechanism of liquid surface depressions affecting plasma discharge characteristics and the consequential distribution of plasma species,and further study the influence of liquid surface depressions of different sizes generated by different helium flow rates on the plasma.Results show that the liquid surface deformation changes the initial spatial electric field,resulting in the rearrangement of electrons on the liquid surface.The charges deposited on the liquid surface further increase the degree of distortion of the electric field.Moreover,the electric field and electron distribution affected by the liquid surface depression significantly influence the generation and distribution of active species,which determines the practical effectiveness of the relevant applications.This work explores the phenomenon of liquid surface depression,which has been neglected in previous related work,and contributes to further understanding of plasma-liquid interactions,providing better theoretical guidance for related applications and technologies.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Flexible surface micro-discharge plasma is a non-thermal plasma technique used for treating wounds in a painless way, with significant efficacy for chronic or hard-to-heal wounds. In this study, a confined space was d...Flexible surface micro-discharge plasma is a non-thermal plasma technique used for treating wounds in a painless way, with significant efficacy for chronic or hard-to-heal wounds. In this study, a confined space was designed to simulate wound conditions, with gelatin used to simulate wound tissue. The distinction between open and confined spaces was explored, and the effects of temperature, humidity, discharge power and the gap size within the confined space on the plasma characteristics were analyzed. It was found that temperature, humidity and discharge power are important factors that affect the concentration distribution of active components and the mode transition between ozone and nitrogen oxides. Compared to open space, the concentration of ozone in confined space was relatively lower, which facilitated the formation of nitrogen oxides. In open space, the discharge was dominated by ozone initially. As the temperature,humidity and discharge power increased, nitrogen oxides in the gas-phase products were gradually detected. In confined space, nitrogen oxides can be detected at an early stage and at much higher concentrations than ozone concentration. Furthermore, as the gap of the confined space decreased, the concentration of ozone was observed to decrease while that of nitrate increased, and the rate of this concentration change was further accelerated at higher temperature and higher power. It was shown that ozone concentration decreased from 0.11 to 0.03 μmol and the nitrate concentration increased from 20.5 to 24.5 μmol when the spacing in the confined space was reduced from 5 to 1 mm, the temperature of the external discharge was controlled at 40 ℃, and the discharge power was 12 W. In summary, this study reveals the formation and transformation mechanisms of active substances in air surface micro-discharge plasma within confined space, providing foundational data for its medical applications.展开更多
Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure die...Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.展开更多
As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is nume...As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is numerically simulated in atmospheric pressure helium mixed with trace nitrogen based on a fluid model.With varying relative position(phase difference(Δφ))of the wavy surfaces,there is a positive discharge and a negative discharge per voltage cycle,each of which consists of a pulse stage and a hump stage.For the pulse stage,maximal current increases with increasingΔφ.Results show that DBD with the wavy surfaces appears as discrete micro-discharges(MDs),which are self-organized to different patterns with varyingΔφ.The MDs are vertical and uniformly-spaced withΔφ=0,which are self-organized in pairs withΔφ=π/4.These MD pairs are merged into some bright wide MDs withΔφ=π/2.In addition,narrow MDs appear between tilted wide MDs withΔφ=3π/4.WithΔφ=π,the pattern is composed of wide and narrow MDs,which are vertical and appear alternately.To elucidate the formation mechanism of the patterns with differentΔφ,temporal evolutions of electron density and electric field are investigated for the positive discharge.Moreover,surface charge on the wavy dielectric layers has also been compared with differentΔφ.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo...Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.展开更多
To monitor nuclear and radiation emergencies,it is crucial to obtain accurate in situ measurements of the environmentalγ radiation dose rate from key radionuclides,particularly for large radioactive surface sources.T...To monitor nuclear and radiation emergencies,it is crucial to obtain accurate in situ measurements of the environmentalγ radiation dose rate from key radionuclides,particularly for large radioactive surface sources.The methods currently used for measuring dose rates are inadequate for obtaining the dose rates of key radionuclides and have large angular response errors when monitoring surface sources.To address this practical problem,this study proposes three methods for measuring the dose rate:the weighted peak total ratio,mean value regression,and numerical integration methods.These methods are based on energy-spectrum measurement data,and they were theoretically derived and numerically evaluated.Finally,a 1-m-long hexagonal radioactive surface source was integrated into a larger surface source.In situ measurement experiments were conducted on a large radioactive surface source using a dose-rate meter and a portable HPGespectrometer to analyze the errors of the three aforementioned methods and verify their validity.展开更多
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this...The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.展开更多
In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In...In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.展开更多
Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in cu...Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.展开更多
A wide passband frequency selective surface(FSS)is proposed using a five-layer stacked structure.The proposed structure applies four layers of dielectric plates and five layers of metal patches to provide a passband a...A wide passband frequency selective surface(FSS)is proposed using a five-layer stacked structure.The proposed structure applies four layers of dielectric plates and five layers of metal patches to provide a passband and exhibits more stable frequency responses and lower insertion loss under wide-angle oblique incidence compared with the typical three-layer metal-dielectric structure.According to the simulation results,the proposed FSS can achieve a passband range of 1.7-2.7 GHz with an insertion loss of less than 0.5 d B and a relative bandwidth of 44.1%,and it can preserve stable transmission characteristics with the incident angle ranging from 0°to 45°.展开更多
We build a computer program to reconstruct convex bodies using even L_(p)surface area measures for p≥1.Firstly,we transform the minimization problem Pi,which is equivalent to solving the even L_(p)Minkowski problem,i...We build a computer program to reconstruct convex bodies using even L_(p)surface area measures for p≥1.Firstly,we transform the minimization problem Pi,which is equivalent to solving the even L_(p)Minkowski problem,into a convex optimization problem P4 with a finite number of constraints.This transformation makes it suitable for computational resolution.Then,we prove that the approximate solutions obtained by solving the problem P4 converge to the theoretical solution when N and k are sufficiently large.Finally,based on the convex optimization problem P_(4),we provide an algorithm for reconstructing convex bodies from even L_(p)surface area measures,and present several examples implemented using MATLAB.展开更多
To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to hel...To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.展开更多
Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of...Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of the instantaneous channel state information(CSI)in the cascaded RIS chain makes an indispensable contribution to the performance gains.However,it is quite challenging to estimate the CSI in a time-variant scenario due to the limited signal processing capability of the passive elements embedded in a RIS pannel.In this work,a channel estimation scheme for the RIS-assisted wireless communication system is proposed,which is demonstrated to perform well in a time-variant scenario.The cascaded RIS channel is modeled as a state-space model based upon the mobility situations.In addition,to fully exploit the time correlation of channel,Kalman filter is employed by taking the prior information of channels into account.Further,the optimal reflection coefficients are derived according to the minimum mean square error(MMSE)criterion.Numerical results show that the proposed methods exhibit superior performance if compared with a conventional channel estimation scheme.展开更多
In this paper,we investigate the reconfigurable intelligent surface(RIS)-enabled multiple-input-single-output orthogonal frequency division multiplexing(MISO-OFDM)system under frequency-selective channels,and propose ...In this paper,we investigate the reconfigurable intelligent surface(RIS)-enabled multiple-input-single-output orthogonal frequency division multiplexing(MISO-OFDM)system under frequency-selective channels,and propose a low-complexity alternating optimization(AO)based joint beamforming and RIS phase shifts optimization algorithm to maximize the achievable rate.First,with fixed RIS phase shifts,we devise the optimal closedform transmit beamforming vectors corresponding to different subcarriers.Then,with given active beamforming vectors,near-optimal RIS reflection coefficients can be determined efficiently leveraging fractional programming(FP)combined with manifold optimization(MO)or majorization-minimization(MM)framework.Additionally,we also propose a heuristic RIS phase shifts design approach based on the sum of subcarrier gain maximization(SSGM)criterion requiring lower complexity.Numerical results indicate that the proposed MO/MM algorithm can achieve almost the same rate as the upper bound achieved by the semidefinite relaxation(SDR)algorithm,and the proposed SSGM based scheme is only slightly inferior to the upper bound while has much lower complexity.These results demonstrate the effectiveness of the proposed algorithms.展开更多
In order to reduce the number of surface mining accidents related to low visibility conditions and blind spots of trucks and to provide 3D information for truck drivers and real time monitored truck information for th...In order to reduce the number of surface mining accidents related to low visibility conditions and blind spots of trucks and to provide 3D information for truck drivers and real time monitored truck information for the remote dispatcher, a 3D assisted driving system (3D-ADS) based on the GPS, mesh-wireless networks and the Google-Earth engine as the graphic interface and mine-mapping server, was developed at Virginia Tech. The research results indicate that this 3D-ADS system has the potential to increase reliability and reduce uncertainty in open pit mining operations by customizing the local 3D digital mining map, con-structing 3D truck models, tracking vehicles in real time using a 3D interface and indicating available escape routes for driver safety.展开更多
A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prep...A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.展开更多
文摘Introduction
Owing to long-time running, more facilities including stations, pipelines, vessels have become corrosive and aged ,some process has grown old, it has exert more burden for the maintenance and repair.Simultaneously, the fluid production rate, oil production rate and water injection rate has changed greatly so that the inflicts and problems from the established surface systems will become more obvious. Energy cost of production and running has increasing continuously. Capacity has been unbalance in systems and areas.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金supported by National Natural Science Foundation of China(No.52377145).
文摘Atmospheric pressure plasma-liquid interactions exist in a variety of applications,including wastewater treatment,wound sterilization,and disinfection.In practice,the phenomenon of liquid surface depression will inevitably appear.The applied gas will cause a depression on the liquid surface,which will undoubtedly affect the plasma generation and further affect the application performance.However,the effect of liquid surface deformation on the plasma is still unclear.In this work,numerical models are developed to reveal the mechanism of liquid surface depressions affecting plasma discharge characteristics and the consequential distribution of plasma species,and further study the influence of liquid surface depressions of different sizes generated by different helium flow rates on the plasma.Results show that the liquid surface deformation changes the initial spatial electric field,resulting in the rearrangement of electrons on the liquid surface.The charges deposited on the liquid surface further increase the degree of distortion of the electric field.Moreover,the electric field and electron distribution affected by the liquid surface depression significantly influence the generation and distribution of active species,which determines the practical effectiveness of the relevant applications.This work explores the phenomenon of liquid surface depression,which has been neglected in previous related work,and contributes to further understanding of plasma-liquid interactions,providing better theoretical guidance for related applications and technologies.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. 1003016001)。
文摘Flexible surface micro-discharge plasma is a non-thermal plasma technique used for treating wounds in a painless way, with significant efficacy for chronic or hard-to-heal wounds. In this study, a confined space was designed to simulate wound conditions, with gelatin used to simulate wound tissue. The distinction between open and confined spaces was explored, and the effects of temperature, humidity, discharge power and the gap size within the confined space on the plasma characteristics were analyzed. It was found that temperature, humidity and discharge power are important factors that affect the concentration distribution of active components and the mode transition between ozone and nitrogen oxides. Compared to open space, the concentration of ozone in confined space was relatively lower, which facilitated the formation of nitrogen oxides. In open space, the discharge was dominated by ozone initially. As the temperature,humidity and discharge power increased, nitrogen oxides in the gas-phase products were gradually detected. In confined space, nitrogen oxides can be detected at an early stage and at much higher concentrations than ozone concentration. Furthermore, as the gap of the confined space decreased, the concentration of ozone was observed to decrease while that of nitrate increased, and the rate of this concentration change was further accelerated at higher temperature and higher power. It was shown that ozone concentration decreased from 0.11 to 0.03 μmol and the nitrate concentration increased from 20.5 to 24.5 μmol when the spacing in the confined space was reduced from 5 to 1 mm, the temperature of the external discharge was controlled at 40 ℃, and the discharge power was 12 W. In summary, this study reveals the formation and transformation mechanisms of active substances in air surface micro-discharge plasma within confined space, providing foundational data for its medical applications.
基金the financial support from National Natural Science Foundation of China(Nos.22078125 and 52004102)Postdoctoral Science Foundation of China(No.2023M741472)。
文摘Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12375250,11875121,51977057,11805013)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2020201025 and A2022201036)+3 种基金the Hebei Province Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project(Grant No.22567634H)the Funds for Distinguished Young Scientists of Hebei Province,China(Grant No.A2012201045)the Natural Science Interdisciplinary Research Program of Hebei University(Grant Nos.DXK201908 and DXK202011)the Post-graduate’s Innovation Fund Project of Hebei University(Grant No.HBU2022bs004)。
文摘As a popular approach to producing atmospheric pressure non-thermal plasma,dielectric barrier discharge(DBD)has been extensively used in various application fields.In this paper,DBD with wavy dielectric layers is numerically simulated in atmospheric pressure helium mixed with trace nitrogen based on a fluid model.With varying relative position(phase difference(Δφ))of the wavy surfaces,there is a positive discharge and a negative discharge per voltage cycle,each of which consists of a pulse stage and a hump stage.For the pulse stage,maximal current increases with increasingΔφ.Results show that DBD with the wavy surfaces appears as discrete micro-discharges(MDs),which are self-organized to different patterns with varyingΔφ.The MDs are vertical and uniformly-spaced withΔφ=0,which are self-organized in pairs withΔφ=π/4.These MD pairs are merged into some bright wide MDs withΔφ=π/2.In addition,narrow MDs appear between tilted wide MDs withΔφ=3π/4.WithΔφ=π,the pattern is composed of wide and narrow MDs,which are vertical and appear alternately.To elucidate the formation mechanism of the patterns with differentΔφ,temporal evolutions of electron density and electric field are investigated for the positive discharge.Moreover,surface charge on the wavy dielectric layers has also been compared with differentΔφ.
基金National Natural Science Foundation of China(Grant No.22005318,22379152)Western Young Scholars Foundations of Chinese Academy of Sciences+4 种基金Lanzhou Youth Science and Technology Talent Innovation Project(Grant No.2023-NQ-86,No.2023-QN-96)Lanzhou Chengguan District Science and Technology Plan Project(Grant No.2023-rc-4,2022-rc-4)Collaborative Innovation Alliance Fund for Young Science and Technology Worker(Grant No.HZJJ23-7)National Nature Science Foundations of Gansu Province(Grant No.21JR11RA020)Fundamental Research Funds for the Central Universities(Grant No.31920220073,31920230128)。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.
文摘To monitor nuclear and radiation emergencies,it is crucial to obtain accurate in situ measurements of the environmentalγ radiation dose rate from key radionuclides,particularly for large radioactive surface sources.The methods currently used for measuring dose rates are inadequate for obtaining the dose rates of key radionuclides and have large angular response errors when monitoring surface sources.To address this practical problem,this study proposes three methods for measuring the dose rate:the weighted peak total ratio,mean value regression,and numerical integration methods.These methods are based on energy-spectrum measurement data,and they were theoretically derived and numerically evaluated.Finally,a 1-m-long hexagonal radioactive surface source was integrated into a larger surface source.In situ measurement experiments were conducted on a large radioactive surface source using a dose-rate meter and a portable HPGespectrometer to analyze the errors of the three aforementioned methods and verify their validity.
基金supported by Southern Marine Science and Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP229)。
文摘The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
基金supported by Ministry of Science and Technology of the People’s Republic of China(2020YFB1808101)the Project“5G evolution wireless air interface intelligent R&D and verification public platform project”supported by Ministry of Industry and Information Technology of the People’s Republic of China(TC220A04M).
文摘In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key R&D Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.IA20220800001。
文摘A wide passband frequency selective surface(FSS)is proposed using a five-layer stacked structure.The proposed structure applies four layers of dielectric plates and five layers of metal patches to provide a passband and exhibits more stable frequency responses and lower insertion loss under wide-angle oblique incidence compared with the typical three-layer metal-dielectric structure.According to the simulation results,the proposed FSS can achieve a passband range of 1.7-2.7 GHz with an insertion loss of less than 0.5 d B and a relative bandwidth of 44.1%,and it can preserve stable transmission characteristics with the incident angle ranging from 0°to 45°.
文摘We build a computer program to reconstruct convex bodies using even L_(p)surface area measures for p≥1.Firstly,we transform the minimization problem Pi,which is equivalent to solving the even L_(p)Minkowski problem,into a convex optimization problem P4 with a finite number of constraints.This transformation makes it suitable for computational resolution.Then,we prove that the approximate solutions obtained by solving the problem P4 converge to the theoretical solution when N and k are sufficiently large.Finally,based on the convex optimization problem P_(4),we provide an algorithm for reconstructing convex bodies from even L_(p)surface area measures,and present several examples implemented using MATLAB.
文摘To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.
基金supported in part by National Natural Science Foundation of China(Grant Nos.61921003,61925101,61831002 and 61901315)in part by the Beijing Natural Science Foundation under(Grant No.JQ18016)in part by the Fundamental Research Funds for the Central Universities(Grant No.2020RC08).
文摘Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of the instantaneous channel state information(CSI)in the cascaded RIS chain makes an indispensable contribution to the performance gains.However,it is quite challenging to estimate the CSI in a time-variant scenario due to the limited signal processing capability of the passive elements embedded in a RIS pannel.In this work,a channel estimation scheme for the RIS-assisted wireless communication system is proposed,which is demonstrated to perform well in a time-variant scenario.The cascaded RIS channel is modeled as a state-space model based upon the mobility situations.In addition,to fully exploit the time correlation of channel,Kalman filter is employed by taking the prior information of channels into account.Further,the optimal reflection coefficients are derived according to the minimum mean square error(MMSE)criterion.Numerical results show that the proposed methods exhibit superior performance if compared with a conventional channel estimation scheme.
基金supported in part by the National Natural Science Foundation of China under Grants 61971126 and 61921004ZTE CorporationState Key Laboratory of Mobile Network and Mobile Multimedia Technology.
文摘In this paper,we investigate the reconfigurable intelligent surface(RIS)-enabled multiple-input-single-output orthogonal frequency division multiplexing(MISO-OFDM)system under frequency-selective channels,and propose a low-complexity alternating optimization(AO)based joint beamforming and RIS phase shifts optimization algorithm to maximize the achievable rate.First,with fixed RIS phase shifts,we devise the optimal closedform transmit beamforming vectors corresponding to different subcarriers.Then,with given active beamforming vectors,near-optimal RIS reflection coefficients can be determined efficiently leveraging fractional programming(FP)combined with manifold optimization(MO)or majorization-minimization(MM)framework.Additionally,we also propose a heuristic RIS phase shifts design approach based on the sum of subcarrier gain maximization(SSGM)criterion requiring lower complexity.Numerical results indicate that the proposed MO/MM algorithm can achieve almost the same rate as the upper bound achieved by the semidefinite relaxation(SDR)algorithm,and the proposed SSGM based scheme is only slightly inferior to the upper bound while has much lower complexity.These results demonstrate the effectiveness of the proposed algorithms.
基金Financial support for this work, provided by the Key Programs of the National Science and Technology Foundation during the 11th Five-Year Plan Period (No.2006BAK04B04) the State Scholarship Fund (No.2007104096), is gratefully acknowledged
文摘In order to reduce the number of surface mining accidents related to low visibility conditions and blind spots of trucks and to provide 3D information for truck drivers and real time monitored truck information for the remote dispatcher, a 3D assisted driving system (3D-ADS) based on the GPS, mesh-wireless networks and the Google-Earth engine as the graphic interface and mine-mapping server, was developed at Virginia Tech. The research results indicate that this 3D-ADS system has the potential to increase reliability and reduce uncertainty in open pit mining operations by customizing the local 3D digital mining map, con-structing 3D truck models, tracking vehicles in real time using a 3D interface and indicating available escape routes for driver safety.
基金supported by National Science Fund for Outstanding Young Scholars of China (No. 50625721)
文摘A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.