Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydr...Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydrophobic or superhydrophilic,are extensively employed due to their superior anti-icing,drag reduction,enhanced boiling heat transfer,self-cleaning,and anti-bacterial properties depending on solid-liquid interfacial interactions.Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility,system precision,and ease for automation.These techniques create laser induced periodic surface structures(LIPSS)or hierarchical structures on substrate material.However,micro/nanostructures alone cannot attain the desired wettability.Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability.This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods.Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed.The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented.More importantly,surface functionalities of these surfaces with extreme wetting properties are discussed.Lastly,prospects for future research are proposed and discussed.展开更多
This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor ...This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.展开更多
Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy stor-age due to their high safety,cost-effectiveness,and environ-mental friendliness.However,uncontrolled zinc den...Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy stor-age due to their high safety,cost-effectiveness,and environ-mental friendliness.However,uncontrolled zinc dendrite growth and side reactions of the zinc anode decrease the sta-bility of Zn batteries.We report the synthesis of an air-oxid-ized carbon nanotube(O-CNT)film by chemical vapor de-position followed by heat treatment in air which is used as a protective layer on the Zn foil to suppress zinc dendrite growth.The increase in the hydrophilicity of the O-CNT film caused by air oxidation facilitates zinc deposition between the film and the anode instead of deposition on the film surface.The porous structure of the O-CNT film homogenizes the Zn^(2+)ion flux and the electric field on the surface of the Zn foil,leading to the uniform deposition of Zn.As a result,a O-CNT@Zn symmetric cell has a much better cycling stability with a life of more than 3000 h at 1 mA cm^(−2) with a capacity of 1 mAh cm^(−2),and values of more than 2000 h and 1 mAh cm^(−2) at 5 mA cm^(−2).In addition,a O-CNT@Zn||Mn^(2+)inserted hydrated vanadium pentoxide(MnVOH)full cell has a better rate per-formance than a Zn||MnVOH cell,achieving a high discharge capacity of 194 mAh g^(−1) at a high current density of 8 A g^(−1).In a long-term cycling test,the O-CNT@Zn||MnVOH full cell has a capacity retention of 58.8%after 2000 cycles at a current density of 5 A·g^(−1).展开更多
The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) tri...The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) triethoxysilane(MPTES) and(3-Amincpropyl) trithoxysilane(APTES). Some further modifications were studied by chloroaceetyl choride and 1,8-Diaminoaphalene for amino modified silica. The surface functionalized silica nanoparticles were characterized by Fourier transform infrared(FI-IR) and X-ray photoelectron spectroscopy(XPS). The prepared adsorbent of surface functionalized silica nanoparticles with differential function groups were investigated in the selective adsorption about Pb2+, Cu2+, Hg2+, Cd2+ and Zn2+ions in aqueous solutions. The results show that the(3-Mercaptopropyl) triethoxysilane functionalized silica nanoparticles(SiO2-MPTES) play an important role in the selective adsorption of Cu2+ and Hg2+, the(3-Amincpropyl) trithoxysilane(APTES) functionalized silica nanoparticles(SiO2-APTES) exhibited maximum removal efficiency towards Pb2+ and Hg2+, the 1,8-Diaminoaphalene functionalized silica nanoparticles was excellent for removal of Hg2+ at room temperature, respectively.展开更多
In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the...In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.展开更多
In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micr...In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.展开更多
The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite un...The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy(AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.展开更多
Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operati...Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operating voltage window of their activated carbon(AC)cathodes.We report a scalable thermal treatment strategy to develop high-voltage-tolerant AC cathodes.Through controlled thermal treatment of commer-cial activated carbon(Raw-AC)under a H_(2)/Ar atmosphere at 400-800℃,the targeted reduction of degradation-prone functional groups can be achieved while preserving the critical pore structure and increasing graph-itic microcrystalline ordering.The AC treated at 400℃(HAC-400)had a significant increase in specific capacity(96.0 vs.75.1 mAh/g at 0.05 A/g)and better rate capability(61.1 vs.36.1 mAh/g at 5 A/g)in half-cell LICs,along with an 83.5%capacity retention over 7400 cycles within an extended voltage range of 2.0-4.2 V in full-cell LICs.Scalability was demonstrated by a 120 g batch production,enabling fabrication of pouch-type LICs with commercial hard carbon anodes that delivered a higher energy density of 28.3 Wh/kg at 1 C,and a peak power density of 12.1 kW/kg compared to devices using raw AC.This simple,industry-compatible approach may be used for producing ad-vanced cathode materials for practical high-performance LICs.展开更多
In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazo...In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazole derivatization and nitration of cellulose and its micro-sized derivative(TNCN and TCMCN).Their molecular structures,physicochemical properties,thermal behaviors,mechanical sensitivities and detonation performances were studied and compared to those of the corresponding nitrocellulose and nitrated micro-sized cellulose(NCN and CMCN).The developed energetic TNCN and TCMCN exhibited insensitive character with excellent features such as density of 1.710 g/cm3and 1.726 g/cm3,nitrogen content of 20.95%and 22.59%,and detonation velocity of 7552 m/s and 7786 m/s,respectively,and thereby demonstrate their potential applications as new generation of energetic biopolymers to substitute the common NCN.Furthermore,thermal results showed that the designed nitrated and chemical modified cellulosic biopolymers displayed good thermal stability with multistep decomposition mechanism.These results enrich future prospects for the design of promising insensitive and high-energy dense cellulose-rich materials and commence a new chapter in this field.展开更多
Based on the works of Greve and Rahmat-Samii, theelectromagnetic (EM) performance of the reflector antenna withnon-uniform surface errors along radius is further addressed. Amathematical model is developed to descri...Based on the works of Greve and Rahmat-Samii, theelectromagnetic (EM) performance of the reflector antenna withnon-uniform surface errors along radius is further addressed. Amathematical model is developed to describe the weighting functionfor the non-uniform surface errors along radius. Then, somediscussions on the peak gain loss (PGL) and the first sidelobelevel increase (SLLI) caused by the non-uniform surface errors arepresented and several significant radiation characteristics of thereflector with non-uniform errors are pointed out. Last, based onthe proposed model, the weighted root mean square (RMS) valueof the surface errors is produced to evaluate the EM performanceand several representative cases with different non-uniform errorsare presented with good results. Results show that the weightedRMS value should be taken into account for a better quality evaluationof the reflector surface.展开更多
基金Project(52105175)supported by the National Natural Science Foundation of ChinaProject(BK20210235)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(JSSCBS20210121)supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program,China。
文摘Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial,industrial,and military areas.Surfaces with extreme wetting properties,e.g.,superhydrophobic or superhydrophilic,are extensively employed due to their superior anti-icing,drag reduction,enhanced boiling heat transfer,self-cleaning,and anti-bacterial properties depending on solid-liquid interfacial interactions.Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility,system precision,and ease for automation.These techniques create laser induced periodic surface structures(LIPSS)or hierarchical structures on substrate material.However,micro/nanostructures alone cannot attain the desired wettability.Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability.This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods.Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed.The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented.More importantly,surface functionalities of these surfaces with extreme wetting properties are discussed.Lastly,prospects for future research are proposed and discussed.
基金Project(52278380)supported by the National Natural Science Foundation of ChinaProject(2023JJ30670)supported by the National Science Foundation of and Technology Major Project of Hunan Province,China。
文摘This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.
基金supported by the National Natural Science Foundation of China(22179093 and21905202)。
文摘Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy stor-age due to their high safety,cost-effectiveness,and environ-mental friendliness.However,uncontrolled zinc dendrite growth and side reactions of the zinc anode decrease the sta-bility of Zn batteries.We report the synthesis of an air-oxid-ized carbon nanotube(O-CNT)film by chemical vapor de-position followed by heat treatment in air which is used as a protective layer on the Zn foil to suppress zinc dendrite growth.The increase in the hydrophilicity of the O-CNT film caused by air oxidation facilitates zinc deposition between the film and the anode instead of deposition on the film surface.The porous structure of the O-CNT film homogenizes the Zn^(2+)ion flux and the electric field on the surface of the Zn foil,leading to the uniform deposition of Zn.As a result,a O-CNT@Zn symmetric cell has a much better cycling stability with a life of more than 3000 h at 1 mA cm^(−2) with a capacity of 1 mAh cm^(−2),and values of more than 2000 h and 1 mAh cm^(−2) at 5 mA cm^(−2).In addition,a O-CNT@Zn||Mn^(2+)inserted hydrated vanadium pentoxide(MnVOH)full cell has a better rate per-formance than a Zn||MnVOH cell,achieving a high discharge capacity of 194 mAh g^(−1) at a high current density of 8 A g^(−1).In a long-term cycling test,the O-CNT@Zn||MnVOH full cell has a capacity retention of 58.8%after 2000 cycles at a current density of 5 A·g^(−1).
基金Project(2012CB722803)supported by the Key Project of National Basic Research and Development Program of ChinaProject(U1202271)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘The industrial silica fume pretreated by nitric acid at 80 °C was re-used in this work. Then, the obtained silica nanoparticles were surface functionalized by silane coupling agents, such as(3-Mercaptopropyl) triethoxysilane(MPTES) and(3-Amincpropyl) trithoxysilane(APTES). Some further modifications were studied by chloroaceetyl choride and 1,8-Diaminoaphalene for amino modified silica. The surface functionalized silica nanoparticles were characterized by Fourier transform infrared(FI-IR) and X-ray photoelectron spectroscopy(XPS). The prepared adsorbent of surface functionalized silica nanoparticles with differential function groups were investigated in the selective adsorption about Pb2+, Cu2+, Hg2+, Cd2+ and Zn2+ions in aqueous solutions. The results show that the(3-Mercaptopropyl) triethoxysilane functionalized silica nanoparticles(SiO2-MPTES) play an important role in the selective adsorption of Cu2+ and Hg2+, the(3-Amincpropyl) trithoxysilane(APTES) functionalized silica nanoparticles(SiO2-APTES) exhibited maximum removal efficiency towards Pb2+ and Hg2+, the 1,8-Diaminoaphalene functionalized silica nanoparticles was excellent for removal of Hg2+ at room temperature, respectively.
基金Project(2006AA04Z405)supported by the National High Technology Research and Development Program of ChinaProject(3102019)supported by Beijing Municipal Natural Science Foundation,China
文摘In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.
基金Projects(50975092,50805052,U0834002) supported by the National Natural Science Foundation of ChinaProject(9151030101000007) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2009ZZ0041) supported by the Fundamental Research Funds for the Central Universities in China
文摘In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.
基金Project(51464029)supported by the National Natural Science Foundation of ChinaProject(2014M562343)supported by China Postdoctoral Science FoundationProject(KKSY201421110)supported by the Scholar Development Project of Yunnan Province,China
文摘The surface states of pyrite(Fe S2) were theoretically investigated using first principle calculation based on the density functional theory(DFT). The results indicate that both the(200) and(311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy(AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.
文摘Lithium-ion capacitors(LICs)combine the high power dens-ity of electrical double-layer capacitors with the high energy density of lithium-ion batteries.However,they face practical limitations due to the narrow operating voltage window of their activated carbon(AC)cathodes.We report a scalable thermal treatment strategy to develop high-voltage-tolerant AC cathodes.Through controlled thermal treatment of commer-cial activated carbon(Raw-AC)under a H_(2)/Ar atmosphere at 400-800℃,the targeted reduction of degradation-prone functional groups can be achieved while preserving the critical pore structure and increasing graph-itic microcrystalline ordering.The AC treated at 400℃(HAC-400)had a significant increase in specific capacity(96.0 vs.75.1 mAh/g at 0.05 A/g)and better rate capability(61.1 vs.36.1 mAh/g at 5 A/g)in half-cell LICs,along with an 83.5%capacity retention over 7400 cycles within an extended voltage range of 2.0-4.2 V in full-cell LICs.Scalability was demonstrated by a 120 g batch production,enabling fabrication of pouch-type LICs with commercial hard carbon anodes that delivered a higher energy density of 28.3 Wh/kg at 1 C,and a peak power density of 12.1 kW/kg compared to devices using raw AC.This simple,industry-compatible approach may be used for producing ad-vanced cathode materials for practical high-performance LICs.
基金financial support and the necessary facilities for this study by the Ecole Militaire polytechnique and the Ludwig-Maximilian University of Munich(LMU)。
文摘In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazole derivatization and nitration of cellulose and its micro-sized derivative(TNCN and TCMCN).Their molecular structures,physicochemical properties,thermal behaviors,mechanical sensitivities and detonation performances were studied and compared to those of the corresponding nitrocellulose and nitrated micro-sized cellulose(NCN and CMCN).The developed energetic TNCN and TCMCN exhibited insensitive character with excellent features such as density of 1.710 g/cm3and 1.726 g/cm3,nitrogen content of 20.95%and 22.59%,and detonation velocity of 7552 m/s and 7786 m/s,respectively,and thereby demonstrate their potential applications as new generation of energetic biopolymers to substitute the common NCN.Furthermore,thermal results showed that the designed nitrated and chemical modified cellulosic biopolymers displayed good thermal stability with multistep decomposition mechanism.These results enrich future prospects for the design of promising insensitive and high-energy dense cellulose-rich materials and commence a new chapter in this field.
基金supported by the National Basic Research Program of China(973 Program)(2015CB857100)the Foundation for Key Laboratory of Xinjiang Uygur Autonomous Region(2014KL012)+2 种基金the National Natural Science Foundation of China(514906605147534951522507)
文摘Based on the works of Greve and Rahmat-Samii, theelectromagnetic (EM) performance of the reflector antenna withnon-uniform surface errors along radius is further addressed. Amathematical model is developed to describe the weighting functionfor the non-uniform surface errors along radius. Then, somediscussions on the peak gain loss (PGL) and the first sidelobelevel increase (SLLI) caused by the non-uniform surface errors arepresented and several significant radiation characteristics of thereflector with non-uniform errors are pointed out. Last, based onthe proposed model, the weighted root mean square (RMS) valueof the surface errors is produced to evaluate the EM performanceand several representative cases with different non-uniform errorsare presented with good results. Results show that the weightedRMS value should be taken into account for a better quality evaluationof the reflector surface.