期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
1
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
2
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
3
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system clustering
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
4
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
5
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
6
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
7
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
基于模糊聚类的电网谐波综合评估方法 被引量:13
8
作者 姚猛 蒋德珑 陈根永 《电测与仪表》 北大核心 2011年第10期1-4,24,共5页
为构建绿色电网,科学考察谐波污染情况,构建了一种基于模糊聚类算法的电网谐波综合评估方法。采用谐波评估的各项指标作为特征值,将已知的谐波评估等级数据加入到量测样本数据中,共同组成综合评估样本数据集,利用模糊聚类算法进行聚类分... 为构建绿色电网,科学考察谐波污染情况,构建了一种基于模糊聚类算法的电网谐波综合评估方法。采用谐波评估的各项指标作为特征值,将已知的谐波评估等级数据加入到量测样本数据中,共同组成综合评估样本数据集,利用模糊聚类算法进行聚类分析,得到包含各个谐波评估等级的聚类结果,从而实现对样本数据的综合评估,达到考察谐波污染情况的目的。通过实例数据的计算,验证了方法的有效性。 展开更多
关键词 电网 谐波评估 模糊聚类 谐波治理
在线阅读 下载PDF
井下基于动态指纹更新的指纹定位算法研究 被引量:4
9
作者 崔丽珍 王巧利 +1 位作者 郭倩倩 杨勇 《系统仿真学报》 CAS CSCD 北大核心 2021年第4期818-824,共7页
围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Mark... 围绕煤矿井下环境特点,提出一种基于动态指纹更新的指纹定位算法。该算法运用FCM(Fuzzy C-Means Clustering)按信号分布特征划分井下定位区域,在各个子区域建立训练学习模型。在FCM算法基础上提出一种基于移动用户位置的HMM(Hidden Markov Model)运动信息序列模型,通过用户无意识地参与RSSI(Received Signal Strength Indication)序列的采集,实现指纹数据库的动态更新。运用具有自学习能力的ANFIS(Adaptive Network-based Fuzzy Inference System)算法定位未知节点。实验结果表明:所提的井下基于动态指纹更新的指纹定位算法定位精度可达2.6 m,满足煤矿井下巷道的实时定位需求。 展开更多
关键词 煤矿井下 指纹匹配定位 fuzzy c-means clustering算法 区域划分 指纹库更新 hidden Markov model运动轨迹模型 adaptive network-based fuzzy inference system定位模型 定位精度
在线阅读 下载PDF
基于人工免疫细胞模型的模糊聚类算法 被引量:3
10
作者 王磊 王伟 李玉祥 《计算机工程》 CAS CSCD 北大核心 2011年第5期13-15,共3页
传统的模糊c均值算法需要提前输入聚类个数,但输入错误的聚类数会产生错误的聚类结果。为此,提出一种基于人工免疫细胞膜型的模糊聚类算法。引入种群规模迭代与模糊聚类迭代相结合的双迭代思路,利用种群规模迭代指导聚类数的自动生成,... 传统的模糊c均值算法需要提前输入聚类个数,但输入错误的聚类数会产生错误的聚类结果。为此,提出一种基于人工免疫细胞膜型的模糊聚类算法。引入种群规模迭代与模糊聚类迭代相结合的双迭代思路,利用种群规模迭代指导聚类数的自动生成,在每次种群规模迭代中加入模糊聚类迭代,同时将克隆选择、抗体免疫抑制等操作融入计算过程。理论分析与仿真结果表明,该算法能搜寻到正确的聚类个数,具有较好的聚类效果。 展开更多
关键词 模糊聚类 人工免疫 模糊C均值 克隆选择 抗体免疫抑制
在线阅读 下载PDF
优选抑制式非局部空间模糊C-均值图像分割方法 被引量:5
11
作者 赵凤 范九伦 《计算机应用研究》 CSCD 北大核心 2012年第7期2737-2739,2746,共4页
当图像被噪声严重污染时,像素的邻域像素也可能被污染。此时,来自于像素点的邻域像素的局部空间信息无法在含噪图像分割中发挥积极的指导作用。鉴于此,利用图像中与像素具有相似邻域结构的像素构造新的非局部加权和图像,并在新图像的灰... 当图像被噪声严重污染时,像素的邻域像素也可能被污染。此时,来自于像素点的邻域像素的局部空间信息无法在含噪图像分割中发挥积极的指导作用。鉴于此,利用图像中与像素具有相似邻域结构的像素构造新的非局部加权和图像,并在新图像的灰度直方图上采用优选抑制式模糊C-均值聚类,提出优选抑制式非局部空间模糊C-均值图像分割方法。实验结果表明,该方法能进一步提高模糊C-均值聚类方法对于图像噪声的鲁棒性,获得了更加理想的分割结果。 展开更多
关键词 模糊C-均值聚类 图像分割 抑制式模糊C-均值 非局部空间信息
在线阅读 下载PDF
自适应抑制式模糊C-回归模型算法
12
作者 郭华峰 赵建民 潘修强 《计算机科学》 CSCD 北大核心 2015年第2期274-276,310,共4页
模糊C-回归模型算法由Hathaway和Bezdek提出,与硬C-回归模型算法相比有着稳定性强、收敛效果好的优点,但该算法也存在着收敛速度偏慢的问题。针对此问题,引入隶属度抑制思想,提出了抑制式模糊C-回归模型(SFCRM)算法。实验表明,S-FCRM算... 模糊C-回归模型算法由Hathaway和Bezdek提出,与硬C-回归模型算法相比有着稳定性强、收敛效果好的优点,但该算法也存在着收敛速度偏慢的问题。针对此问题,引入隶属度抑制思想,提出了抑制式模糊C-回归模型(SFCRM)算法。实验表明,S-FCRM算法加快了算法的收敛速度,提供了较好的收敛效果。然而S-FCRM算法还存在着抑制因子参数选择的问题,针对这个问题,研究了抑制因子选择的自适应方法,进一步提出了自适应抑制式模糊C-回归模型(AS-FCRM)算法。实验表明,AS-FCRM算法有着较好的自适应效果,收敛速度更快,鲁棒性更好。 展开更多
关键词 模糊聚类 切换回归 抑制式 自适应
在线阅读 下载PDF
图像信息驱动的抑制式粗糙模糊聚类分割算法 被引量:2
13
作者 赵凤 程艳阳 +1 位作者 刘汉强 刘琳 《信号处理》 CSCD 北大核心 2021年第9期1750-1762,共13页
粗糙模糊聚类方法需要手动设置阈值确定粗糙聚类的上、下近似且对图像中的噪声较为敏感。为了减少人为干预,实现粗糙模糊聚类在图像分割中的深度应用,本文提出一种图像驱动的抑制式粗糙模糊聚类分割算法。方法中设计了基于超像素区域信... 粗糙模糊聚类方法需要手动设置阈值确定粗糙聚类的上、下近似且对图像中的噪声较为敏感。为了减少人为干预,实现粗糙模糊聚类在图像分割中的深度应用,本文提出一种图像驱动的抑制式粗糙模糊聚类分割算法。方法中设计了基于超像素区域信息的自适应阈值策略,用于确定粗糙模糊聚类的上下近似,将图像空间信息引入到粗糙模糊聚类,构造了融合空间信息的粗糙模糊聚类目标函数,克服方法对于图像噪声的敏感性,此外,为进一步提升聚类性能,将模糊聚类中的抑制式学习思想引入到粗糙下近似集中像素的模糊隶属度的修正,实现了粗糙和模糊思想的深度融合。本文算法是更具混合智能机理的粗糙模糊聚类图像分割算法,实验结果表明了本文算法的有效性。 展开更多
关键词 图像分割 粗糙模糊聚类 抑制式学习 图像信息 自适应阈值
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
14
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy c-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
用于分割无损检测图像的改进的抑制式模糊C均值聚类算法 被引量:10
15
作者 朱占龙 刘永军 +1 位作者 赵战民 郑一博 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第8期110-118,共9页
由于无损检测图像灰度分布不均衡,常用的模糊C均值聚类算法不能对图像中的目标与背景进行有效分割,故提出一种改进的抑制式模糊C均值聚类算法(IS-FCM)对无损检测图像进行分割。通过对抑制式模糊C均值聚类算法(S-FCM)的目标函数融入每一... 由于无损检测图像灰度分布不均衡,常用的模糊C均值聚类算法不能对图像中的目标与背景进行有效分割,故提出一种改进的抑制式模糊C均值聚类算法(IS-FCM)对无损检测图像进行分割。通过对抑制式模糊C均值聚类算法(S-FCM)的目标函数融入每一类的总隶属度以均衡化目标像素和背景像素对聚类结果的影响,在构建的新目标函数基础上推导出新的隶属度和聚类中心迭代形式,然后分析了所提算法的收敛性并给出了执行步骤,最后通过无损检测图像对所提算法进行分割实验。结果表明,IS-FCM算法不仅能够对灰度分布不均衡的无损检测图像进行有效分割,还扩展了S-FCM算法的应用范围,增强了鲁棒性和适应性。 展开更多
关键词 无损检测图像 图像分割 抑制式模糊C均值聚类 灰度不均衡分布
在线阅读 下载PDF
结合区域信息的双抑制FCM聚类图像分割 被引量:2
16
作者 兰蓉 胡天隆 赵强 《计算机工程与设计》 北大核心 2022年第6期1740-1748,共9页
针对抑制式模糊C均值聚类算法在进行图像分割时出现的收敛性能较差和像素错误分割问题,提出一种结合区域信息的双抑制模糊C均值聚类图像分割算法。对图像进行初始区域划分,针对不同的区域,提取其区域信息;利用区域信息构建修正因子,实... 针对抑制式模糊C均值聚类算法在进行图像分割时出现的收敛性能较差和像素错误分割问题,提出一种结合区域信息的双抑制模糊C均值聚类图像分割算法。对图像进行初始区域划分,针对不同的区域,提取其区域信息;利用区域信息构建修正因子,实现对模糊隶属度的初次抑制;将区域信息和数据自身的分布特性相结合,利用指数函数构建抑制因子的自适应选取公式,实现对模糊隶属度的二次抑制,进一步提高收敛性能。实验结果表明,该算法可以改善像素易错分现象,提高了收敛性能。 展开更多
关键词 区域信息 抑制式模糊C均值聚类 抑制因子 图像分割 模糊隶属度
在线阅读 下载PDF
基于图像块鲁棒抑制式模糊C均值图像分割 被引量:1
17
作者 郑一博 李忠灿 +2 位作者 程杨鑫 董雨荷 朱占龙 《河北大学学报(自然科学版)》 CAS 北大核心 2023年第4期442-448,共7页
考虑到无损检测图像具有易受噪声干扰且目标占图像面积较小的特性,以图像块为基本单元,提出一种较强鲁棒性和自适应性的抑制式模糊C均值算法用于无损检测图像的分割.首先,对图像块内像素的权重进行自适应确定,其权重受图像块内像素的空... 考虑到无损检测图像具有易受噪声干扰且目标占图像面积较小的特性,以图像块为基本单元,提出一种较强鲁棒性和自适应性的抑制式模糊C均值算法用于无损检测图像的分割.首先,对图像块内像素的权重进行自适应确定,其权重受图像块内像素的空间距离和灰度值大小的影响;然后构建了图像块的模糊不确定性模型,并以图像块为基本单元将其引入至新的目标函数并进行求解,给出算法的执行流程;最后采用无损检测图像进行实验,结果显示所提出的算法具有较好的鲁棒性和有效性. 展开更多
关键词 图像分割 抑制式模糊C均值 图像块 无损检测
在线阅读 下载PDF
A new measuring method for maximal length, width and thickness dimensions of coarse aggregates
18
作者 段跃华 张肖宁 吴传海 《Journal of Central South University》 SCIE EI CAS 2011年第6期2150-2156,共7页
In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and ... In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement. 展开更多
关键词 coarse aggregate flat and elongated (F&E) aggregate X-ray CT digital image processing fuzzy c-means clustering overlap area method spherical harmonics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部