Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam suppor...Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influen...The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.展开更多
The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ...The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.展开更多
Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two t...Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.展开更多
Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays...Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.展开更多
For the rapidly developing unmanned aerial vehicle(UAV)swarm,the system-of-systems(SoS)oriented design is a prospective conceptual design methodology due to the competence for complex mission requirements and subsyste...For the rapidly developing unmanned aerial vehicle(UAV)swarm,the system-of-systems(SoS)oriented design is a prospective conceptual design methodology due to the competence for complex mission requirements and subsystems interactions.In the SoS oriented design,the subsystems performance trade-off is the basis of design decisions.In the trade-off for surveillance missions,most previous works do not consider track reporting and mainly focus on the design of platforms.An improved method for the subsystems performance trade-off in the SoS oriented UAV swarm design is proposed.Within an improved design framework with subsystems disaggregation,this method is characterized by treating platforms,sensors,and communications as equally important subsystems,integrating operational strategies into the trade-off,and enabling the trade-off for track reporting.Those advantages are achieved by a behavior-based modular model structure for agent-based operational modeling and simulation.In addition,a method of analyzing the bounds of the communication range is also presented.Simulation experiments are conducted by using precision-based simulation replication rules and surrogate modeling methods.The results demonstrate the effectiveness of the proposed method,and show that the configuration of area partitioning changes the trade space of subsystems performances,indicating the necessity of integrating operational strategies into the conceptual design.展开更多
The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly d...The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly determined by the expert with experience. This paper proposed a brand-new method to construct indicator systems based on the repeated simulation of the scenario space, and calculated by quantitative data. Firstly, the selection of key indicators using the Gini indicator importance measure(IIM)is calculated by random forests(RFs). Then, principal component analysis(PCA) is applied when we use the selected indicators to construct the composite indicator system of SoS. Furthermore,a set of rulesare is developed to verify the practicability of the indicator system such as correlation, robustness, accuracy and convergence. Experiment shows that the algorithm achieves good results for the construction of composite indicators of So S.展开更多
In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theor...In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.展开更多
Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility sho...Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility should affect the vibrations of PGSs too.However,most previous work did not completely consider the effects of the ring gear flexibility on the vibrations of PGSs and flexible supports of ring and sun gears.Thus,this paper presents a flexible-rigid coupling multi-body dynamic(FMBD)model for a PGS with the flexible supports and ring gear flexibility.A finite element model of ring gear is established to formulate the ring gear flexibility.The influences of clearance and damping of planet bearings on the vibrations of PGS are considered.The effects of flexible supports and ring gear flexibility on the vibrations of PGS under different moment and speed conditions are studied.The statistical parameters and peak frequencies of PGS from the proposed FMBD and previous rigid multi-body dynamic(RMBD)models are compared.The results denote that the flexible support has a great effect on the vibrations of PGS.This paper can provide some guidance for the support structure design and vibration control for PGSs.展开更多
In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested...In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested. The IDSS possesses selflearning and adaptive properties, and has been used for managing and analyzing the optimal operational conditions since June 1992. Electric energy consumption has been reduced remarkably and the coefficient of recovery of cobalt and nickel has been increased.展开更多
This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially...This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially suggested. The IDSS possesses the self-learning and adaptive properties, andhas been used for managing and analyzing the production information, optimizing the composition of the charge mixture, and deciding the optimal operational conditions. Electric energy consumption has been reduced remarkably and the yield of nickel has been increased.展开更多
The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corr...The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corrosion status were determined. Secondly, an experimental system was established for simulating the corrosion process within the stray current interference. Then, a predictive model for the corrosion status was built, using a support vector machine(SVM) method and experimental data. The data were divided into two sets, including training set and testing set. The training set was used to generate the SVM model and the testing set was used to evaluate the predictive performance of the SVM model. The results show that the relationship between the characteristic parameter and the influence parameters is nonlinear and the SVM model is suitable for predicting the corrosion status.展开更多
A system of systems(SoS)composes a set of independent constituent systems(CSs),where the degree of authority to control the independence of CSs varies,depending on different SoS types.Key researchers describe four SoS...A system of systems(SoS)composes a set of independent constituent systems(CSs),where the degree of authority to control the independence of CSs varies,depending on different SoS types.Key researchers describe four SoS types with descending levels of central authority:directed,acknowledged,collaborative and virtual.Although the definitions have been recognized in SoS engineering,what is challenging is the difficulty of translating these definitions into models and simulation environments.Thus,we provide a goal-based method including a mathematical baseline to translate these definitions into more effective agent-based modeling and simulations.First,we construct the theoretical models of CS and SoS.Based on the theoretical models,we analyze the degree of authority influenced by SoS characteristics.Next,we propose a definition of SoS types by quantitatively explaining the degree of authority.Finally,we recognize the differences between acknowledged SoS and collaborative SoS using a migrating waterfowl flock by an agentbased model(ABM)simulation.This paper contributes to the SoS body of knowledge by increasing our understanding of the degree of authority in an SoS,so we may identify suitable SoS types to achieve SoS goals by modeling and simulation.展开更多
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2...Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.展开更多
The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are ...The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.展开更多
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per...An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.展开更多
Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operat...Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region.展开更多
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42277174,42477166)supported by the National Natural Science Foundation of China+1 种基金Project(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(KFJJ24-01M)supported by the State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology,China。
文摘Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金supported by the National Natural Science Foundation of China(22376063,21976057)the Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A05)Fundamental Research Funds for the Central Universities.
文摘The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+2 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(Leading Fund(2023)09)supported by the Natural Science Research Fund of Guizhou University,ChinaProject(JYBSYS2021101)supported by the Open Fund of Key Laboratory of Safe and Effective Coal Mining,Ministry of Education,China。
文摘The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.U2241285,62201267)。
文摘Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.
文摘Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.
基金supported by the National Natural Science Foundation of China(11872314)the National Key Research and Development Program of China(2017YFB1300102)
文摘For the rapidly developing unmanned aerial vehicle(UAV)swarm,the system-of-systems(SoS)oriented design is a prospective conceptual design methodology due to the competence for complex mission requirements and subsystems interactions.In the SoS oriented design,the subsystems performance trade-off is the basis of design decisions.In the trade-off for surveillance missions,most previous works do not consider track reporting and mainly focus on the design of platforms.An improved method for the subsystems performance trade-off in the SoS oriented UAV swarm design is proposed.Within an improved design framework with subsystems disaggregation,this method is characterized by treating platforms,sensors,and communications as equally important subsystems,integrating operational strategies into the trade-off,and enabling the trade-off for track reporting.Those advantages are achieved by a behavior-based modular model structure for agent-based operational modeling and simulation.In addition,a method of analyzing the bounds of the communication range is also presented.Simulation experiments are conducted by using precision-based simulation replication rules and surrogate modeling methods.The results demonstrate the effectiveness of the proposed method,and show that the configuration of area partitioning changes the trade space of subsystems performances,indicating the necessity of integrating operational strategies into the conceptual design.
基金supported by the Major Program of the National Natural Science Foundation of China(U1435218)National Natural Science Foundation of China(6140340171401168)
文摘The indicator system is the foundation and emphasis in the effectiveness evaluation of system of systems(SoS). In the past, indicator systems were founded based on qualitative methods, and every indicator was mainly determined by the expert with experience. This paper proposed a brand-new method to construct indicator systems based on the repeated simulation of the scenario space, and calculated by quantitative data. Firstly, the selection of key indicators using the Gini indicator importance measure(IIM)is calculated by random forests(RFs). Then, principal component analysis(PCA) is applied when we use the selected indicators to construct the composite indicator system of SoS. Furthermore,a set of rulesare is developed to verify the practicability of the indicator system such as correlation, robustness, accuracy and convergence. Experiment shows that the algorithm achieves good results for the construction of composite indicators of So S.
基金Project(50934002) supported by the National Natural Science Foundation of China
文摘In order to have a good understanding of the behavior of wet shotcrete as a support element interacting with the rock mass,mechanism of wet shotcrete interacting with rock in support systems was analyzed through theoretical,numerical study and analytical analysis.A new model of distribution of rock stress state after wet shotcrete was applied,which includes shotcrete layer,composite layer,strengthening layer,plastic layer and elastic layer,and a full illustration of the rock mass stress state was given after shotcrete interacting with rock mass.At the same time,numerical analysis with FLAC gives a stress distribution along the monitor line,respectively,at the sidewall and roof of the tunnel.The displacement obviously decreases with the depth of rock,the tangential stress for tunnel supported by shotcrete is lower than that without shotcrete,and radial stress for tunnel supported by shotcrete is higher than that without shotcrete.It has been demonstrated by AIRY'S stress function,which gives a reasonable solution.Finally,the application of wet shotcrete in Jinfeng Gold Mine shows that the displacement of tunnel decreases obviously in sidewall and roof.
基金Projects(51605051,51975068)supported by the National Natural Science Foundation of China。
文摘Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility should affect the vibrations of PGSs too.However,most previous work did not completely consider the effects of the ring gear flexibility on the vibrations of PGSs and flexible supports of ring and sun gears.Thus,this paper presents a flexible-rigid coupling multi-body dynamic(FMBD)model for a PGS with the flexible supports and ring gear flexibility.A finite element model of ring gear is established to formulate the ring gear flexibility.The influences of clearance and damping of planet bearings on the vibrations of PGS are considered.The effects of flexible supports and ring gear flexibility on the vibrations of PGS under different moment and speed conditions are studied.The statistical parameters and peak frequencies of PGS from the proposed FMBD and previous rigid multi-body dynamic(RMBD)models are compared.The results denote that the flexible support has a great effect on the vibrations of PGS.This paper can provide some guidance for the support structure design and vibration control for PGSs.
文摘In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested. The IDSS possesses selflearning and adaptive properties, and has been used for managing and analyzing the optimal operational conditions since June 1992. Electric energy consumption has been reduced remarkably and the coefficient of recovery of cobalt and nickel has been increased.
文摘This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially suggested. The IDSS possesses the self-learning and adaptive properties, andhas been used for managing and analyzing the production information, optimizing the composition of the charge mixture, and deciding the optimal operational conditions. Electric energy consumption has been reduced remarkably and the yield of nickel has been increased.
基金Project(BE2010043) supported by the Technology Support Program of Jiangsu Province,ChinaProject(CXZZ13_0928) supported by the Graduate Education Innovation Project of Jiangsu Province,China
文摘The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corrosion status were determined. Secondly, an experimental system was established for simulating the corrosion process within the stray current interference. Then, a predictive model for the corrosion status was built, using a support vector machine(SVM) method and experimental data. The data were divided into two sets, including training set and testing set. The training set was used to generate the SVM model and the testing set was used to evaluate the predictive performance of the SVM model. The results show that the relationship between the characteristic parameter and the influence parameters is nonlinear and the SVM model is suitable for predicting the corrosion status.
基金supported by the National Key Research and Development Program of China(61873236)the Natural Science Foundation of Zhejiang Province(LZ21F020003,LY18F030001)the Civil Aerospace Pre-research Project(D020101).
文摘A system of systems(SoS)composes a set of independent constituent systems(CSs),where the degree of authority to control the independence of CSs varies,depending on different SoS types.Key researchers describe four SoS types with descending levels of central authority:directed,acknowledged,collaborative and virtual.Although the definitions have been recognized in SoS engineering,what is challenging is the difficulty of translating these definitions into models and simulation environments.Thus,we provide a goal-based method including a mathematical baseline to translate these definitions into more effective agent-based modeling and simulations.First,we construct the theoretical models of CS and SoS.Based on the theoretical models,we analyze the degree of authority influenced by SoS characteristics.Next,we propose a definition of SoS types by quantitatively explaining the degree of authority.Finally,we recognize the differences between acknowledged SoS and collaborative SoS using a migrating waterfowl flock by an agentbased model(ABM)simulation.This paper contributes to the SoS body of knowledge by increasing our understanding of the degree of authority in an SoS,so we may identify suitable SoS types to achieve SoS goals by modeling and simulation.
基金Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
文摘Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.
基金Project(2015SK1002) supported by Key Projects of Hunan Province Science and Technology Plan,China
文摘The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained.
文摘An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.
基金Projects(51076027,51036002) supported by the National Natural Science Foundation of ChinaProject(20090092110051) supported by the Doctoral Fund of Ministry of Education of China
文摘Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region.