窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进...窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进行判定,针对当日线损不是明显激增的情况,提出基于台区线损综合波动率、总分表电流差异率、线损和电流曲线的突变点时间重合度的三步分析法,为窃电嫌疑用户的检测提供了良好的条件;第2阶段提出基于最优特征集的时间序列相似性度量方法,基于欧氏距离度量曲线间数值特征,同时基于动态时间规整(dynamic time warping,DTW)算法度量曲线间的形态特征,实现窃电嫌疑用户的初步筛选;第3阶段提出基于核函数和惩罚参数优化的支持向量机二次深度检测模型(optimize kernel-function and penalty-parameters support vector machine,OKPSVM),其中惩罚参数采用综合改进的粒子群(improved particle swarm optimization,IPSO)算法。通过算例仿真和实际工程应用,整体优化后的支持向量机模型(IPSO-OKPSVM)能够提高深度窃电检测的精准性和适用性。展开更多
结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor ma...结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor machine,STM)的以3D T1加权MR脑白质图像为输入的阿尔兹海默症诊断算法。首先用SPM8软件将采集的MRI数据进行预处理,分割为灰质、白质、脑脊液3部分,提取脑白质各体素的灰度值构建三阶灰度张量,然后用递归特征消除(Recursive Feature Elimination,RFE)法结合支持张量机进行特征选择,最后用支持张量机进行分类。在阿尔兹海默症患者(AD),轻度认知障碍患者(MCI)(包括转化为AD的MCI-C和未转化的MCI-NC)以及正常对照(NC)4组人群中进行实验测试,并用10折交叉验证方法获得验证结果。用ROC曲线下面积AUC、分类准确率、敏感性、特异性这4个指标评价分类器的性能,AD vs NC组分别达到99.1%、97.14%、95.71%、98.57%;AD vs MCI组分别达到88.29%、84.07%、78.57%、91.07%;MCI vs NC组分别达到89.18%、87.91%、93.75%、78.57%;MCI-C vs MCI-NC组分别达到87.5%、82.08%、80.36%、82.14%。算法保持了原始图像的张量结构,提高了分类器的性能,实验结果表明此算法是一种有效的阿尔兹海默症诊断方法。展开更多
文摘窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进行判定,针对当日线损不是明显激增的情况,提出基于台区线损综合波动率、总分表电流差异率、线损和电流曲线的突变点时间重合度的三步分析法,为窃电嫌疑用户的检测提供了良好的条件;第2阶段提出基于最优特征集的时间序列相似性度量方法,基于欧氏距离度量曲线间数值特征,同时基于动态时间规整(dynamic time warping,DTW)算法度量曲线间的形态特征,实现窃电嫌疑用户的初步筛选;第3阶段提出基于核函数和惩罚参数优化的支持向量机二次深度检测模型(optimize kernel-function and penalty-parameters support vector machine,OKPSVM),其中惩罚参数采用综合改进的粒子群(improved particle swarm optimization,IPSO)算法。通过算例仿真和实际工程应用,整体优化后的支持向量机模型(IPSO-OKPSVM)能够提高深度窃电检测的精准性和适用性。
基金supported by the National Key Basic Research Program of China(2009CB118500)Scientific Research Foundation for theReturned Overseas Chinese Scholars,Ministry of Education,China(20071108-18-15)~~
文摘结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor machine,STM)的以3D T1加权MR脑白质图像为输入的阿尔兹海默症诊断算法。首先用SPM8软件将采集的MRI数据进行预处理,分割为灰质、白质、脑脊液3部分,提取脑白质各体素的灰度值构建三阶灰度张量,然后用递归特征消除(Recursive Feature Elimination,RFE)法结合支持张量机进行特征选择,最后用支持张量机进行分类。在阿尔兹海默症患者(AD),轻度认知障碍患者(MCI)(包括转化为AD的MCI-C和未转化的MCI-NC)以及正常对照(NC)4组人群中进行实验测试,并用10折交叉验证方法获得验证结果。用ROC曲线下面积AUC、分类准确率、敏感性、特异性这4个指标评价分类器的性能,AD vs NC组分别达到99.1%、97.14%、95.71%、98.57%;AD vs MCI组分别达到88.29%、84.07%、78.57%、91.07%;MCI vs NC组分别达到89.18%、87.91%、93.75%、78.57%;MCI-C vs MCI-NC组分别达到87.5%、82.08%、80.36%、82.14%。算法保持了原始图像的张量结构,提高了分类器的性能,实验结果表明此算法是一种有效的阿尔兹海默症诊断方法。