Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to th...Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to the analysis with support vector machine method, the drawback of determining the parameters only by experts' experience should be improved. After a detailed description of the methodology of SVM and simulated annealing, an improved algorithm was proposed for the automatic optimization of parameters using SVM method. An example has proved that the proposed method can efficiently select the parameters of the SVM method. And by optimizing the parameters, the forecasting accuracy of the max wind velocity increases by 34.45%, which indicates that the new SASVM model improves the forecasting accuracy.展开更多
由于风速随机性大且影响风速大小的因素较多,为了提高风速预测的准确性,研究了将支持向量机(support vectorm ach ine,SVM)应用于风速预测的方法。通过交叉验证选取LIBSVM回归机的最优参数组合并建立模型。实验结果表明,该方法在风速的...由于风速随机性大且影响风速大小的因素较多,为了提高风速预测的准确性,研究了将支持向量机(support vectorm ach ine,SVM)应用于风速预测的方法。通过交叉验证选取LIBSVM回归机的最优参数组合并建立模型。实验结果表明,该方法在风速的实际预测中具有可行性。展开更多
基金Project(71071052) supported by the National Natural Science Foundation of ChinaProject(JB2011097) supported by the Fundamental Research Funds for the Central Universities of China
文摘Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to the analysis with support vector machine method, the drawback of determining the parameters only by experts' experience should be improved. After a detailed description of the methodology of SVM and simulated annealing, an improved algorithm was proposed for the automatic optimization of parameters using SVM method. An example has proved that the proposed method can efficiently select the parameters of the SVM method. And by optimizing the parameters, the forecasting accuracy of the max wind velocity increases by 34.45%, which indicates that the new SASVM model improves the forecasting accuracy.