期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于蚁群SVDD和聚类方法的旋转机械故障诊断 被引量:7
1
作者 杜文辽 李安生 +2 位作者 孙旺 李彦明 刘成良 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第9期1440-1444,共5页
针对典型故障样本缺乏而使常规机器学习方法无法直接应用的难题,提出了一个基于支持向量数据描述(SVDD)新异类检测与基于Davies Bouldin指数(DBI)的K均值聚类方法相结合的旋转机械故障诊断框架.首先,针对正常状态样本建立SVDD模型,并利... 针对典型故障样本缺乏而使常规机器学习方法无法直接应用的难题,提出了一个基于支持向量数据描述(SVDD)新异类检测与基于Davies Bouldin指数(DBI)的K均值聚类方法相结合的旋转机械故障诊断框架.首先,针对正常状态样本建立SVDD模型,并利用蚁群算法对SVDD模型参数进行优化;然后,当拒绝样本数目累积到设定的阈值时,利用K均值聚类方法对其进行处理而获得能够进行标记的类别,其中,K均值聚类的类型数目由DBI辅助确定;最后,针对所标记的各类样本,分别建立SVDD模型并进行训练,将SVDD分类器按照二叉树形式构建系统状态的完整诊断模型.同时,利用滚动轴承多故障模式样本进行训练测试,以验证所提出算法的有效性.结果表明,所提出算法的训练速度为常规网格搜索算法的近10倍,DBI能够有效确定聚类的数目,对样本状态的识别率达到100%. 展开更多
关键词 蚁群支持向量数据描述 K均值聚类 Davies Bouldin指数 旋转机械 故障诊断
在线阅读 下载PDF
SVDD在类别不平衡学习中的应用 被引量:5
2
作者 缪志敏 胡谷雨 +2 位作者 丁力 赵陆文 潘志松 《应用科学学报》 CAS CSCD 北大核心 2008年第1期79-84,共6页
在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数... 在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求. 展开更多
关键词 不平衡类别 单分类 支持向量数据描述 ADABOOST
在线阅读 下载PDF
基于SVDD与信息融合技术的设备性能退化评估 被引量:9
3
作者 刘雨 陈进 +1 位作者 潘玉娜 郭磊 《振动与冲击》 EI CSCD 北大核心 2009年第9期21-24,共4页
为了能够准确地对大型设备的性能退化过程进行描述,提出了一种基于支持向量数据描述(SVDD)和信息融合技术的评估方法。通过SVDD算法分别评估来自单个传感器的数据,然后运用D-S证据理论对来自多传感器的局部评估结果进行信息融合,最终给... 为了能够准确地对大型设备的性能退化过程进行描述,提出了一种基于支持向量数据描述(SVDD)和信息融合技术的评估方法。通过SVDD算法分别评估来自单个传感器的数据,然后运用D-S证据理论对来自多传感器的局部评估结果进行信息融合,最终给出设备的整体性能评估结果。实验分析表明,SVDD算法能够真实地反映设备局部性能退化状态的变化,而利用D-S证据理论得出的整体设备状态评估结果符合实际情况,同时有效地消除局部信息之间的矛盾,提高了设备整体评估的可靠性。 展开更多
关键词 性能退化 支持向量数据描述 信息融合 D—S证据理论
在线阅读 下载PDF
基于最大分类间隔SVDD算法的辐射源个体确认 被引量:4
4
作者 骆振兴 楼才义 +1 位作者 陈仕川 李少伟 《电子与信息学报》 EI CSCD 北大核心 2011年第9期2268-2272,共5页
通信辐射源个体确认技术是实现通信辐射源个体识别的关键技术之一。该文研究了基于支持向量数据描述(SVDD)的通信辐射源个体确认算法。针对传统SVDD算法在正类训练样本不完备的条件下对正类测试样本接受率较低的不足,提出带反类训练的... 通信辐射源个体确认技术是实现通信辐射源个体识别的关键技术之一。该文研究了基于支持向量数据描述(SVDD)的通信辐射源个体确认算法。针对传统SVDD算法在正类训练样本不完备的条件下对正类测试样本接受率较低的不足,提出带反类训练的最大分类间隔SVDD算法(MCM-SVDD)。MCM-SVDD在保证最小化超球体积的同时,使正类训练样本与反类训练样本距离超球表面的间隔最大化,从而提高了对正类测试样本正确接受的泛化能力。基于20台实际通信辐射源样本的实验表明,相对于SVDD,SVDD-neg和SVM,MCM-SVDD具有更高的平均确认率。 展开更多
关键词 无线通信 辐射源个体确认 支持向量数据描述 最大分类间隔svdd 辐射源指纹
在线阅读 下载PDF
基于SVDD与距离测度的齿轮泵故障诊断方法研究 被引量:9
5
作者 王涛 李艾华 +1 位作者 王旭平 蔡艳平 《振动与冲击》 EI CSCD 北大核心 2013年第11期62-65,共4页
提出基于支持向量域描述与距离测度的齿轮泵故障诊断方法。对齿轮泵各种工况下振动信号进行小波包分解,提取各频带能量百分比作为特征向量;利用正常工况下特征向量训练SVDD超球模型,通过定义绝对距离测度检测齿轮泵状态是否出现异常;针... 提出基于支持向量域描述与距离测度的齿轮泵故障诊断方法。对齿轮泵各种工况下振动信号进行小波包分解,提取各频带能量百分比作为特征向量;利用正常工况下特征向量训练SVDD超球模型,通过定义绝对距离测度检测齿轮泵状态是否出现异常;针对每种工况的特征向量单独训练SVDD超球模型,通过定义相对距离测度准确定位齿轮泵的不同故障工况。试验结果表明,采用小波包频带能量可降低数据维数,能有效浓缩故障信息;基于绝对距离测度与相对距离测度的SVDD故障诊断方法既能检测异常状态,亦能区分各种故障工况,可实现状态监测与故障分类识别目的。 展开更多
关键词 小波包分解 支持向量域描述 距离测度 齿轮泵 故障诊断
在线阅读 下载PDF
ESSENTIAL RELATIONSHIP BETWEEN DOMAIN-BASED ONE-CLASS CLASSIFIERS AND DENSITY ESTIMATION 被引量:2
6
作者 陈斌 李斌 +1 位作者 冯爱民 潘志松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期275-281,共7页
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t... One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships. 展开更多
关键词 one-class support vector machine(OCSVM) support vector data descriptionsvdd kernel density estimation
在线阅读 下载PDF
一种约减支持向量域描述算法RSVDD 被引量:5
7
作者 梁锦锦 刘三阳 吴德 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第5期927-931,共5页
为加快支持向量域描述(SVDD)的训练速度,提出基于约减集的约简支持向量域描述算法RSVDD.由于描述边界仅由支持向量决定,且支持向量多分布在描述边缘附近,该算法采用每个样本到中心的距离作为支持向量的一种可能性度量,选取距离较大的部... 为加快支持向量域描述(SVDD)的训练速度,提出基于约减集的约简支持向量域描述算法RSVDD.由于描述边界仅由支持向量决定,且支持向量多分布在描述边缘附近,该算法采用每个样本到中心的距离作为支持向量的一种可能性度量,选取距离较大的部分样本作为约减集参与SVDD训练.人造数据和基准集数据上的仿真实验表明了RSVDD的有效性和优越性,保证了目标类和奇异值类的分类精度,缩减了训练规模和训练时间. 展开更多
关键词 支持向量域描述 约减集 中心距离 支持向量
在线阅读 下载PDF
基于密度敏感最大软间隔SVDD不均衡数据分类算法 被引量:6
8
作者 陶新民 李晨曦 +3 位作者 沈微 常瑞 王若彤 刘艳超 《电子学报》 EI CAS CSCD 北大核心 2018年第11期2725-2732,共8页
为了提高传统支持向量域描述(C-SVDD)算法处理不均衡数据集的分类能力,提出一种基于密度敏感最大软间隔支持向量域描述(DSMSM-SVDD)算法.该算法通过对多数类样本引入相对密度来体现训练样本原始空间分布对求解最优分类界面的影响,通过... 为了提高传统支持向量域描述(C-SVDD)算法处理不均衡数据集的分类能力,提出一种基于密度敏感最大软间隔支持向量域描述(DSMSM-SVDD)算法.该算法通过对多数类样本引入相对密度来体现训练样本原始空间分布对求解最优分类界面的影响,通过在目标函数中增加最大软间隔正则项,使C-SVDD的分类边界向少数类偏移,进而提高算法分类性能.算法首先对每个多数类样本计算相对密度来反映样本的重要性,然后将训练样本输入到DSMSM-SVDD中实现数据分类.实验部分,讨论了算法参数间的关系及其对算法分类性能的影响,给出算法参数取值建议.最后通过与C-SVDD的对比实验,表明本文建议的算法在不均衡数据情况下的分类性能优于C-SVDD算法. 展开更多
关键词 支持向量域数据描述 不均衡数据 相对密度
在线阅读 下载PDF
基于带野值的SVDD的高光谱图像异常检测 被引量:3
9
作者 蒲晓丰 雷武虎 +1 位作者 汤俊杰 黄涛 《光电工程》 CAS CSCD 北大核心 2010年第12期83-87,共5页
基于支持向量数据描述(SVDD)的高光谱图像异常检测算法常常会因为背景样本中混入异常像元(野值)而导致检测概率下降。针对此问题,提出一种基于带野值的支持向量描述的检测算法,引入原点和少量已检测出来的异常像元作为异常样本,以改善... 基于支持向量数据描述(SVDD)的高光谱图像异常检测算法常常会因为背景样本中混入异常像元(野值)而导致检测概率下降。针对此问题,提出一种基于带野值的支持向量描述的检测算法,引入原点和少量已检测出来的异常像元作为异常样本,以改善算法对异常和背景数据的描述能力;同时为抑制错误样本的影响,将异常和背景样本偏离背景样本均值的距离映射作为各样本的加权系数。结果表明,新算法在低虚警概率下较之SVDD模型有更高的检测概率。利用真实数据进行实验证明了算法的有效性。 展开更多
关键词 异常检测 支持向量数据描述(svdd) 加权 高光谱图像
在线阅读 下载PDF
基于PCA-SVDD的故障检测和自学习辨识 被引量:6
10
作者 祝志博 王培良 宋执环 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期652-658,共7页
为了利用多变量统计过程控制在故障检测上的优势以及克服其在故障辨识诊断上的缺陷,提出一套新的用于化工过程的故障检测和自学习辨识算法.应用主元分析(PCA)实施故障检测并对故障数据运用PCA特征提取,提出3种基于主元分析-支持向量数... 为了利用多变量统计过程控制在故障检测上的优势以及克服其在故障辨识诊断上的缺陷,提出一套新的用于化工过程的故障检测和自学习辨识算法.应用主元分析(PCA)实施故障检测并对故障数据运用PCA特征提取,提出3种基于主元分析-支持向量数据描述(PCA-SVDD)的模式判别方法来实现故障的自学习辨识:考虑故障辨识时可能出现的类分布重合问题,分析和比较了基于欧氏距离和归一化半径判别这2种方法,提出针对新型未知故障辨识的加权归一化半径判别法.通过对Tennessee Eastman(TE)过程的仿真研究,说明了提出的故障检测和自学习辨识算法的可行性和有效性. 展开更多
关键词 主元分析-支持向量数据描述(PCA-svdd) 特征提取 故障检测 故障自学习辨识
在线阅读 下载PDF
群决策中基于SVDD的专家权重的评价方法 被引量:2
11
作者 刘万里 王金艳 《武汉理工大学学报(交通科学与工程版)》 2009年第4期807-810,共4页
针对群决策中专家权重的评价问题,提出一种基于支持向量域描述(SVDD)的确定方法.利用生成树的方法把判断矩阵进行一致性剖分,利用支持向量域描述的方法排除干扰信息,找出群体公共信息,并引入群体相容性、群体信息贡献率等概念及其判断方... 针对群决策中专家权重的评价问题,提出一种基于支持向量域描述(SVDD)的确定方法.利用生成树的方法把判断矩阵进行一致性剖分,利用支持向量域描述的方法排除干扰信息,找出群体公共信息,并引入群体相容性、群体信息贡献率等概念及其判断方法;给出不同专家的群体信息贡献率的计算方法,确定出每位专家的评价权重,并通过示例验证了该方法的可行性和有效性.该方法能消除片面的影响,抓住关键信息,对专家的权重能比较客观地评价. 展开更多
关键词 群决策 生成树 相容性 支持向量域描述 权重
在线阅读 下载PDF
一种基于SVDD的舰船机械特征选取新方法 被引量:1
12
作者 毛荣富 朱海潮 +1 位作者 何琳 高志华 《振动与冲击》 EI CSCD 北大核心 2008年第4期101-104,121,共5页
由于传统的特征选取方法大多都依赖于具体的故障类型,必须根据一类或多类故障产生的样本集训练进行特征选取,所以针对某种故障选取的特征对另一种故障状态不一定也能有较好的效果。SVDD(Support Vector Data De-scription)是基于正常样... 由于传统的特征选取方法大多都依赖于具体的故障类型,必须根据一类或多类故障产生的样本集训练进行特征选取,所以针对某种故障选取的特征对另一种故障状态不一定也能有较好的效果。SVDD(Support Vector Data De-scription)是基于正常样本的单值分类器,与其它分类器相比,它形成的最优分类面与具体的故障类型样本没有关系。利用这个原理,以海水泵为例提出了一种基于SVDD的特征选取新方法,通过对ROC(Rece iver Operating Characteristic)曲线的分析来完成舰船机械状态监测的特征选取工作,为了使选取的特征在复杂的舰船实际环境中也具有良好性能,还进行了特征的抗噪声鲁棒性研究。同时基于SVDD的特征选取方法还综合了分类的两种分类错误进行特征优化选取,可以更科学地为舰船机械状态监测选取较好的特征参数。 展开更多
关键词 特征选取 svdd ROC曲线 抗噪声鲁棒性
在线阅读 下载PDF
基于SVDD的三维目标多视点视图建模 被引量:1
13
作者 丁昊 李旭东 赵慧洁 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第11期1517-1521,共5页
同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目... 同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目标全姿态图像,以SVDD方法求取在高维空间内包含尽可能多目标特征向量的最小超球体相关参数,得到数量较少的支持向量将作为目标多视点视图的最佳模型.对多类目标不同姿态的图像(每类2592帧),以规则化不变矩描述目标外形特征,进行了建模实验,并通过识别实验验证了所提方法的有效性和可行性. 展开更多
关键词 多视点建模 支持向量数据描述 三维目标识别 规则化不变矩
在线阅读 下载PDF
基于DPC-SVDD的制造过程异常诊断 被引量:1
14
作者 沈维蕾 杨雪春 吴善春 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第4期433-439,共7页
文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC... 文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。 展开更多
关键词 支持向量数据描述(svdd)算法 密度峰值聚类(DPC)算法 异常检测 密度峰值聚类(DPC)控制图
在线阅读 下载PDF
结合光谱解混的高光谱图像异常目标检测SVDD算法 被引量:14
15
作者 成宝芝 赵春晖 王玉磊 《应用科学学报》 EI CAS CSCD 北大核心 2012年第1期82-88,共7页
异常目标检测是高光谱数据处理的重要应用之一.传统方法采用支持向量数据描述(support vector datadescription,SVDD)检测异常目标而不考虑图像自身存在的背景干扰,检测概率较低.该文提出一种新方法,将光谱解混技术引入到基于SVDD的异... 异常目标检测是高光谱数据处理的重要应用之一.传统方法采用支持向量数据描述(support vector datadescription,SVDD)检测异常目标而不考虑图像自身存在的背景干扰,检测概率较低.该文提出一种新方法,将光谱解混技术引入到基于SVDD的异常检测问题中,实现高光谱图像复杂背景信息和目标信息的分离,使解混后的误差数据含有丰富的目标信息,抑制了背景干扰.利用非线性SVDD将解混误差数据映射到高维特征空间,充分利用高光谱图像波段间的非线性统计特性,完成异常目标的检测.仿真实验结果表明,该算法提高了异常目标的检测能力,降低了虚警率. 展开更多
关键词 光谱解混 支持向量数据描述 异常检测
在线阅读 下载PDF
基于SVDD去除异常值的水下目标定位方法 被引量:2
16
作者 庞菲菲 温祥西 王晓华 《振动与冲击》 EI CSCD 北大核心 2021年第22期182-187,共6页
复杂多变的水声环境使一些传感器节点估计方位角(angle-of-arrival,AOA)时出现异常值,降低了水下目标的定位精度。针对这一问题,该研究利用高斯混合模型对方位角的观测模型进行建模,基于支持向量数据描述(support vector data descripti... 复杂多变的水声环境使一些传感器节点估计方位角(angle-of-arrival,AOA)时出现异常值,降低了水下目标的定位精度。针对这一问题,该研究利用高斯混合模型对方位角的观测模型进行建模,基于支持向量数据描述(support vector data description,SVDD)方法提出去除方位异常值的水下目标定位方法。该方法将目标定位与异常值识别有机结合,利用正常观测和异常观测下目标初始估计位置分布特征不同的特点,使用SVDD方法对这些初始估计位置分类从而识别出异常值,最后将异常值剔除、利用剩余方位信息完成对目标的最终定位。计算机仿真结果证明了所提方法的有效性。 展开更多
关键词 目标定位 异常值检测 方位交线方法 支持向量数据描述(svdd)
在线阅读 下载PDF
基于可拓学和SVDD的轴箱轴承故障监测 被引量:6
17
作者 赵聪聪 赵颖慧 +1 位作者 白杨 刘玉梅 《振动与冲击》 EI CSCD 北大核心 2020年第4期63-68,共6页
为监测轴箱轴承的故障状态,提出了一种基于可拓学和支持向量数据描述(SVDD)的轴承故障监测方法。该方法充分利用了可拓学的定性定量描述特性和SVDD的单值分类特性:通过特征提取构建轴箱轴承的运行状态物元;训练SVDD的单值分类器,通过求... 为监测轴箱轴承的故障状态,提出了一种基于可拓学和支持向量数据描述(SVDD)的轴承故障监测方法。该方法充分利用了可拓学的定性定量描述特性和SVDD的单值分类特性:通过特征提取构建轴箱轴承的运行状态物元;训练SVDD的单值分类器,通过求取最小超球体的支持向量来获取物元模型的特征参数经典域;利用关联函数对轴箱轴承的故障状态进行定性定量评估。通过分析轴箱轴承的实际振动信号,证明了该方法的可行性及有效性。 展开更多
关键词 轴箱轴承 故障监测 可拓学 支持向量数据描述(svdd) 特征提取
在线阅读 下载PDF
基于灰度梯度共生矩阵和SVDD的织物疵点检测 被引量:13
18
作者 王孟涛 李岳阳 +2 位作者 杜帅 蒋高明 罗海驰 《丝绸》 CAS CSCD 北大核心 2018年第12期50-56,共7页
织物疵点检测是现代纺织工业产品质量控制中的关键环节之一,对保证纺织品质量具有重要的现实意义。文章基于此提出一种灰度梯度共生矩阵(GGCM)和单分类器(SVDD)结合的检测方法。该方法首先对织物原图像采用自适应中值滤波、同态滤波进... 织物疵点检测是现代纺织工业产品质量控制中的关键环节之一,对保证纺织品质量具有重要的现实意义。文章基于此提出一种灰度梯度共生矩阵(GGCM)和单分类器(SVDD)结合的检测方法。该方法首先对织物原图像采用自适应中值滤波、同态滤波进行预处理,以消除图像上的光照不匀和噪声等影响,然后利用灰度梯度共生矩阵对预处理后的图像提取15个特征值并组成特征向量,经归一化后送入到单分类器SVDD中训练和测试。实验结果表明:使用此方法进行疵点检测,检验正确率达97%,漏检率为4. 5%和误检率为1. 4%,具有很好的检测效果。 展开更多
关键词 疵点检测 svdd GGCM 自适应中值滤波 同态滤波
在线阅读 下载PDF
基于LTSA-Greedy-SVDD的过程监控 被引量:1
19
作者 杨正永 王昕 王振雷 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期343-348,共6页
为解决实际工业过程中的非线性和非高斯问题,实现有效的过程监控,提出了一种基于局部切空间排列算法的过程监控方法。首先运用局部切空间排列算法对标准化后的正常样本数据提取出低维子流形以实现维数约减。之后利用Greedy方法提取特征... 为解决实际工业过程中的非线性和非高斯问题,实现有效的过程监控,提出了一种基于局部切空间排列算法的过程监控方法。首先运用局部切空间排列算法对标准化后的正常样本数据提取出低维子流形以实现维数约减。之后利用Greedy方法提取特征样本以支持向量数据描述方法建立监控模型,最后采用相应统计量进行过程监控。以田纳西伊斯曼(TE)模型为仿真平台,仿真结果说明了该方法的有效性。 展开更多
关键词 非线性 局部切空间排列(LTSA)算法 Greedy方法 支持向量数据描述
在线阅读 下载PDF
基于VMD和SVDD的滚动轴承早期微弱故障检测和性能退化评估研究 被引量:25
20
作者 王斐 房立清 +1 位作者 赵玉龙 齐子元 《振动与冲击》 EI CSCD 北大核心 2019年第22期224-230,256,共8页
针对滚动轴承早期微弱故障检测及故障状态监测问题,提出了一种基于变模态分解(VMD)分解和支持向量数据描述(SVDD)的滚动轴承性能退化评估模型。对振动信号进行VMD分解,选取对性能退化较为敏感的本征模态分量,提取其奇异值,并结合信号的... 针对滚动轴承早期微弱故障检测及故障状态监测问题,提出了一种基于变模态分解(VMD)分解和支持向量数据描述(SVDD)的滚动轴承性能退化评估模型。对振动信号进行VMD分解,选取对性能退化较为敏感的本征模态分量,提取其奇异值,并结合信号的时域特征指标,复杂度指标组成特征向量矩阵作为滚动轴承综合特征指标;并以正常状态下的综合特征指标作为训练样本完成SVDD评估模型的构建,利用滚动轴承全寿命试验数据进行评估模型的验证。实验结果表明,该评估模型可以准确检测到滚动轴承早期微弱故障阶段的发生,同时可以很好的揭示滚动轴承性能退化规律,其评估效果优于模糊C均值聚类(FCM)方法。 展开更多
关键词 滚动轴承 微弱故障 性能退化 变分模态分解(VMD) 支持向量数据描述(svdd)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部