在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数...在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求.展开更多
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t...One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.展开更多
由于传统的特征选取方法大多都依赖于具体的故障类型,必须根据一类或多类故障产生的样本集训练进行特征选取,所以针对某种故障选取的特征对另一种故障状态不一定也能有较好的效果。SVDD(Support Vector Data De-scription)是基于正常样...由于传统的特征选取方法大多都依赖于具体的故障类型,必须根据一类或多类故障产生的样本集训练进行特征选取,所以针对某种故障选取的特征对另一种故障状态不一定也能有较好的效果。SVDD(Support Vector Data De-scription)是基于正常样本的单值分类器,与其它分类器相比,它形成的最优分类面与具体的故障类型样本没有关系。利用这个原理,以海水泵为例提出了一种基于SVDD的特征选取新方法,通过对ROC(Rece iver Operating Characteristic)曲线的分析来完成舰船机械状态监测的特征选取工作,为了使选取的特征在复杂的舰船实际环境中也具有良好性能,还进行了特征的抗噪声鲁棒性研究。同时基于SVDD的特征选取方法还综合了分类的两种分类错误进行特征优化选取,可以更科学地为舰船机械状态监测选取较好的特征参数。展开更多
同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目...同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目标全姿态图像,以SVDD方法求取在高维空间内包含尽可能多目标特征向量的最小超球体相关参数,得到数量较少的支持向量将作为目标多视点视图的最佳模型.对多类目标不同姿态的图像(每类2592帧),以规则化不变矩描述目标外形特征,进行了建模实验,并通过识别实验验证了所提方法的有效性和可行性.展开更多
文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC...文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。展开更多
复杂多变的水声环境使一些传感器节点估计方位角(angle-of-arrival,AOA)时出现异常值,降低了水下目标的定位精度。针对这一问题,该研究利用高斯混合模型对方位角的观测模型进行建模,基于支持向量数据描述(support vector data descripti...复杂多变的水声环境使一些传感器节点估计方位角(angle-of-arrival,AOA)时出现异常值,降低了水下目标的定位精度。针对这一问题,该研究利用高斯混合模型对方位角的观测模型进行建模,基于支持向量数据描述(support vector data description,SVDD)方法提出去除方位异常值的水下目标定位方法。该方法将目标定位与异常值识别有机结合,利用正常观测和异常观测下目标初始估计位置分布特征不同的特点,使用SVDD方法对这些初始估计位置分类从而识别出异常值,最后将异常值剔除、利用剩余方位信息完成对目标的最终定位。计算机仿真结果证明了所提方法的有效性。展开更多
文摘在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求.
基金Supported by the National Natural Science Foundation of China(60603029)the Natural Science Foundation of Jiangsu Province(BK2007074)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(06KJB520132)~~
文摘One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.
文摘同一目标在不同观察视点下成像后外形可能有较大差异,因此三维目标多视点视图建模是目标识别的关键.针对该问题,提出了基于支持向量数据描述(SVDD,SupportVector Data Description)方法对目标特征进行描述.在视点球面上均匀采样获取目标全姿态图像,以SVDD方法求取在高维空间内包含尽可能多目标特征向量的最小超球体相关参数,得到数量较少的支持向量将作为目标多视点视图的最佳模型.对多类目标不同姿态的图像(每类2592帧),以规则化不变矩描述目标外形特征,进行了建模实验,并通过识别实验验证了所提方法的有效性和可行性.
文摘文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。
文摘复杂多变的水声环境使一些传感器节点估计方位角(angle-of-arrival,AOA)时出现异常值,降低了水下目标的定位精度。针对这一问题,该研究利用高斯混合模型对方位角的观测模型进行建模,基于支持向量数据描述(support vector data description,SVDD)方法提出去除方位异常值的水下目标定位方法。该方法将目标定位与异常值识别有机结合,利用正常观测和异常观测下目标初始估计位置分布特征不同的特点,使用SVDD方法对这些初始估计位置分类从而识别出异常值,最后将异常值剔除、利用剩余方位信息完成对目标的最终定位。计算机仿真结果证明了所提方法的有效性。