Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the...Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.展开更多
孪生支持向量机(twin support vector machine,TSVM)能有效地处理交叉或异或等类型的数据.然而,当处理集值数据时,TSVM通常利用集值对象的均值、中值等统计信息.不同于TSVM,提出能直接处理集值数据的孪生支持函数机(twin support functi...孪生支持向量机(twin support vector machine,TSVM)能有效地处理交叉或异或等类型的数据.然而,当处理集值数据时,TSVM通常利用集值对象的均值、中值等统计信息.不同于TSVM,提出能直接处理集值数据的孪生支持函数机(twin support function machine,TSFM).依据集值对象定义的支持函数,TSFM在巴拿赫空间取得非平行的超平面.为了抑制集值数据中的离群点,TSFM采用了弹球损失函数并引入了集值对象的权重.考虑到TSFM是无穷维空间的优化问题,测度采用狄拉克测度的线性组合的形式,这构建有限维空间的优化模型.为了有效地求解优化模型,利用采样策略将模型转化成二次规划(quadratic programming,QP)问题并推导出二次规划问题的对偶形式,这为判断哪些采样点是支持向量提供了理论基础.为了分类集值数据,定义集值对象到巴拿赫空间的超平面的距离并由此得出判别规则.也考虑支持函数的核化以便取得数据的非线性特征,这使得提出的模型可用于不定核函数.实验结果表明,TSFM能获取交叉类型的集值数据的内在结构,并且在离群点或集值对象包含少量高维事例的情况下取得了良好的分类性能.展开更多
Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G...Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).展开更多
针对室内可见光定位中非视距信道(Non Line of Sight,NLOS)导致定位精度不足的问题,提出了一种基于动态高斯加权(Dynamic Gaussian Weighted,DGW)接收信号强度指示(Received Signal Strength Indicator,RSSI)和遗传算法(Genetic Algorit...针对室内可见光定位中非视距信道(Non Line of Sight,NLOS)导致定位精度不足的问题,提出了一种基于动态高斯加权(Dynamic Gaussian Weighted,DGW)接收信号强度指示(Received Signal Strength Indicator,RSSI)和遗传算法(Genetic Algorithm,GA)改进支持向量回归(Support Vector Regression,SVR)的室内可见光定位算法。首先,构建指纹库并划分数据集,计算接收器与光源之间的距离动态调整高斯函数的标准差,再结合RSSI信号的波动性进行自适应加权,以减少NLOS对定位的影响。然后,使用GA优化SVR模型的参数,得到最佳定位模型。最后,使用最佳定位模型对加权后的指纹数据进行定位预测。实验结果表明:本算法的平均定位误差为7.1 cm,相较于SVR、SVR-GA等算法降低了21.1%~42.3%,并且能有效降低NLOS的影响、提高室内定位的精度,具有较强的应用前景。展开更多
基金the National Natural Science Foundation of China (60574075)
文摘Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.
文摘孪生支持向量机(twin support vector machine,TSVM)能有效地处理交叉或异或等类型的数据.然而,当处理集值数据时,TSVM通常利用集值对象的均值、中值等统计信息.不同于TSVM,提出能直接处理集值数据的孪生支持函数机(twin support function machine,TSFM).依据集值对象定义的支持函数,TSFM在巴拿赫空间取得非平行的超平面.为了抑制集值数据中的离群点,TSFM采用了弹球损失函数并引入了集值对象的权重.考虑到TSFM是无穷维空间的优化问题,测度采用狄拉克测度的线性组合的形式,这构建有限维空间的优化模型.为了有效地求解优化模型,利用采样策略将模型转化成二次规划(quadratic programming,QP)问题并推导出二次规划问题的对偶形式,这为判断哪些采样点是支持向量提供了理论基础.为了分类集值数据,定义集值对象到巴拿赫空间的超平面的距离并由此得出判别规则.也考虑支持函数的核化以便取得数据的非线性特征,这使得提出的模型可用于不定核函数.实验结果表明,TSFM能获取交叉类型的集值数据的内在结构,并且在离群点或集值对象包含少量高维事例的情况下取得了良好的分类性能.
基金supported by the National Natural Science Foundation of China (60974082)
文摘Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).
文摘针对室内可见光定位中非视距信道(Non Line of Sight,NLOS)导致定位精度不足的问题,提出了一种基于动态高斯加权(Dynamic Gaussian Weighted,DGW)接收信号强度指示(Received Signal Strength Indicator,RSSI)和遗传算法(Genetic Algorithm,GA)改进支持向量回归(Support Vector Regression,SVR)的室内可见光定位算法。首先,构建指纹库并划分数据集,计算接收器与光源之间的距离动态调整高斯函数的标准差,再结合RSSI信号的波动性进行自适应加权,以减少NLOS对定位的影响。然后,使用GA优化SVR模型的参数,得到最佳定位模型。最后,使用最佳定位模型对加权后的指纹数据进行定位预测。实验结果表明:本算法的平均定位误差为7.1 cm,相较于SVR、SVR-GA等算法降低了21.1%~42.3%,并且能有效降低NLOS的影响、提高室内定位的精度,具有较强的应用前景。