Suppliers' selection in supply chain management (SCM) has attracted considerable research interests in recent years. Recent literatures show that neural networks achieve better performance than traditional statisti...Suppliers' selection in supply chain management (SCM) has attracted considerable research interests in recent years. Recent literatures show that neural networks achieve better performance than traditional statistical methods. However, neural networks have inherent drawbacks, such as local optimization solution, lack generalization, and uncontrolled convergence. A relatively new machine learning technique, support vector machine (SVM), which overcomes the drawbacks of neural networks, is introduced to provide a model with better explanatory power to select ideal supplier partners. Meanwhile, in practice, the suppliers' samples are very insufficient. SVMs are adaptive to deal with small samples' training and testing. The prediction accuracies for BPNN and SVM methods are compared to choose the appreciating suppliers. The actual examples illustrate that SVM methods are superior to BPNN.展开更多
Supplier selection can be regarded as a typical multiple attribute decision-making problem. In real-world situation, the values of the alternative attributes and their weights are always being nondeterministic, and as...Supplier selection can be regarded as a typical multiple attribute decision-making problem. In real-world situation, the values of the alternative attributes and their weights are always being nondeterministic, and as a result of this, the values are considered interval numbers. In addition, the common approach to measure the similarity between alternatives through their distance suffers from some minor shortcomings. To address these problems, this study develops a novel hybrid decision-making method by combining the technique for order preference by similarity to an ideal solution (TOPSIS) with grey relational analysis (GRA) for supplier selection with interval numbers. By introducing the intervals theory, the extensions of Euclidean distance and grey relational grade are defined. And then a new comprehensive closeness coefficient is constituted for supplier alternatives evaluation based on the interval Euclidean distance and the interval grey relational grade, which could indicate the distance-based similarity and the shape-based similarity simultaneously. A mtmerical example is taken to validate the flexibility of the proposed method, and result shows that this method can tackle the uncertainty in real-world supplier selection and also help decision makers to effectively select optimal suppliers.展开更多
As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time de...As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.展开更多
Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different su...Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.展开更多
With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matchi...With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.展开更多
To be a worldwide competitor, enterprise needs to e va luate and select its supplier carefully. Generally, to evaluate a supplier, the evaluating effort is focused on the purchase price, delivery time, product quali t...To be a worldwide competitor, enterprise needs to e va luate and select its supplier carefully. Generally, to evaluate a supplier, the evaluating effort is focused on the purchase price, delivery time, product quali ty, etc. The vendors’ quality assurance is seldom considered. However, it reflec ts the ability that a vendor can provide high quality but low cost products cont inuously and stably. In this paper, with the study on evaluation of supplier’s q uality assurance system, a set of methods and indices to supplier’s quality assu rance evaluation is introduced. The indices construct an index system, which is based on the ISO9000 series standards. According to the problem’s character and the requirement of evaluation, all the evaluation indices are set off to three k inds: general index, functional index and protective index. And the evaluation m ethod combines quantitative analysis with qualitative analysis. Firstly, a sensi tive factor model is constructed to estimate the contribution of factors that ha ve key effect on synthetic evaluation in supplier’s quality system. Then, those suppliers having low evaluating value are rejected. Secondly, fuzzy logic is int roduced to evaluate other suppliers synthetically. The rest suppliers are compar able. So, supplier’s quality assurance system can be evaluated in quantity. Afte r unification works, the evaluated suppliers can be ranked. And the best vendor can be selected out intuitively.展开更多
文摘Suppliers' selection in supply chain management (SCM) has attracted considerable research interests in recent years. Recent literatures show that neural networks achieve better performance than traditional statistical methods. However, neural networks have inherent drawbacks, such as local optimization solution, lack generalization, and uncontrolled convergence. A relatively new machine learning technique, support vector machine (SVM), which overcomes the drawbacks of neural networks, is introduced to provide a model with better explanatory power to select ideal supplier partners. Meanwhile, in practice, the suppliers' samples are very insufficient. SVMs are adaptive to deal with small samples' training and testing. The prediction accuracies for BPNN and SVM methods are compared to choose the appreciating suppliers. The actual examples illustrate that SVM methods are superior to BPNN.
基金Project(51505488)supported by the National Natural Science Foundation of China
文摘Supplier selection can be regarded as a typical multiple attribute decision-making problem. In real-world situation, the values of the alternative attributes and their weights are always being nondeterministic, and as a result of this, the values are considered interval numbers. In addition, the common approach to measure the similarity between alternatives through their distance suffers from some minor shortcomings. To address these problems, this study develops a novel hybrid decision-making method by combining the technique for order preference by similarity to an ideal solution (TOPSIS) with grey relational analysis (GRA) for supplier selection with interval numbers. By introducing the intervals theory, the extensions of Euclidean distance and grey relational grade are defined. And then a new comprehensive closeness coefficient is constituted for supplier alternatives evaluation based on the interval Euclidean distance and the interval grey relational grade, which could indicate the distance-based similarity and the shape-based similarity simultaneously. A mtmerical example is taken to validate the flexibility of the proposed method, and result shows that this method can tackle the uncertainty in real-world supplier selection and also help decision makers to effectively select optimal suppliers.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2007AA04Z102)the National Natural Science Foundation of China(6087407160574077).
文摘As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.
文摘Supplier selection is a multi-objective decision problem, which must be considered many objectives, some objectives are qualitative, and others are quantitative. Meanwhile, manufacturer has preference for different suppliers. In this paper, a new multi-objective decision model with preference information of supplier is established. A practical example of supplier selection problem utilizing this model is studied. The result demonstrates the feasibility and effectiveness of the methods proposed in the paper.
文摘With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.
文摘To be a worldwide competitor, enterprise needs to e va luate and select its supplier carefully. Generally, to evaluate a supplier, the evaluating effort is focused on the purchase price, delivery time, product quali ty, etc. The vendors’ quality assurance is seldom considered. However, it reflec ts the ability that a vendor can provide high quality but low cost products cont inuously and stably. In this paper, with the study on evaluation of supplier’s q uality assurance system, a set of methods and indices to supplier’s quality assu rance evaluation is introduced. The indices construct an index system, which is based on the ISO9000 series standards. According to the problem’s character and the requirement of evaluation, all the evaluation indices are set off to three k inds: general index, functional index and protective index. And the evaluation m ethod combines quantitative analysis with qualitative analysis. Firstly, a sensi tive factor model is constructed to estimate the contribution of factors that ha ve key effect on synthetic evaluation in supplier’s quality system. Then, those suppliers having low evaluating value are rejected. Secondly, fuzzy logic is int roduced to evaluate other suppliers synthetically. The rest suppliers are compar able. So, supplier’s quality assurance system can be evaluated in quantity. Afte r unification works, the evaluated suppliers can be ranked. And the best vendor can be selected out intuitively.