Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition...Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.展开更多
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d...A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process.展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
文摘Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.
基金supported by Chiang Mai University Research Fund under the contract number T-M5744
文摘A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process.
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.