期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Real-time object segmentation based on convolutional neural network with saliency optimization for picking 被引量:1
1
作者 CHEN Jinbo WANG Zhiheng LI Hengyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1300-1307,共8页
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio... This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regions, allowing more processing is reserved only for these regions. The speed of object segmentation is significantly improved by the region proposal method.By the combination of the region proposal method based on the convolutional neural network and superpixel method, the category and location information can be used to segment objects and image redundancy is significantly reduced. The processing time is reduced considerably by this to achieve the real time. Experiments show that the proposed method can segment the interested target object in real time on an ordinary laptop. 展开更多
关键词 convolutional neural network object detection object segmentation superpixel saliency optimization
在线阅读 下载PDF
Monocular depth ordering with occlusion edges extraction and local depth inference
2
作者 SONG Guiling YU Aiwei +1 位作者 KANG Xuejing MING Anlong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1081-1089,共9页
In this paper, a method to infer global depth ordering for monocular images is presented. Firstly a distance metric is defined with color, compactness, entropy and edge features to estimate the difference between pixe... In this paper, a method to infer global depth ordering for monocular images is presented. Firstly a distance metric is defined with color, compactness, entropy and edge features to estimate the difference between pixels and seeds, which can ensure the superpixels to obtain more accurate object contours. To correctly infer local depth relationship, a weighting descriptor is designed that combines edge, T-junction and saliency features to avoid wrong local inference caused by a single feature. Based on the weighting descriptor, a global inference strategy is presented,which not only can promote the performance of global depth ordering, but also can infer the depth relationships correctly between two non-adjacent regions. The simulation results on the BSDS500 dataset, Cornell dataset and NYU 2 dataset demonstrate the effectiveness of the approach. 展开更多
关键词 superpixel segmentation depth ordering inference weighting descriptor.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部