Centrifugal compressors with parallel-wall and contracting wall vaneless diffuser are designed by using centrifugal compressor computer-aided integrated design system. The internal flow fields of the compressor are ca...Centrifugal compressors with parallel-wall and contracting wall vaneless diffuser are designed by using centrifugal compressor computer-aided integrated design system. The internal flow fields of the compressor are calculated by solving three-dimensional Navier-Stokes equation. Four aspects are investigated and calculation results show that the total efficiencies and total pressure ratios of the compressor with contracting wall vandess diffuser is higher than that of the compressor with parallel-wall. The jet and wake don't mix rapidly inside vandess diffuser. The outlet blade lean angle doesn't affect the compressor performance. The greater the mass flow rate through impeller, the more uneven the velocity distribution at impeller outlet is.展开更多
Since 2006, the superconducting toroidal field(TF) coils of the Experimental Advanced Superconducting Tokomak(EAST) have been successfully cooled by supercritical helium at a temperature of 4.5 K and a pressure of...Since 2006, the superconducting toroidal field(TF) coils of the Experimental Advanced Superconducting Tokomak(EAST) have been successfully cooled by supercritical helium at a temperature of 4.5 K and a pressure of 4 bara in eleven experiments. To obtain higher operating currents and magnetic fields it is necessary to lower the operating temperature of the TF coils.The EAST sub-cooling helium cryogenic system, with a warm oil ring pump(ORP), was tested twice in cool-down experiments, which made the TF coils operate at 3.8 K. However, the long term operational stability of the sub-cooling system cannot be guaranteed because of the ORP's poor mechanical and control performance. In this paper, the present status of the EAST subcooling helium cryogenic system is described, and then several cooling methods below 4.2 K and their merits are presented and analyzed. Finally, an upgrading method with a cold compressor for an EAST sub-cooling helium cryogenic system is proposed. The new process flow and thermodynamic calculation of the sub-cooling helium system, and the main parameters of the cold compressor, are also presented in detail. This work will provide a reference for the future upgrading of the sub-cooling helium system for higher operation parameters of the EAST device.展开更多
A large-scale compressor set of a 2 kW helium cryoplant, as one of the subsystems of EAST (the experimental advanced superconducting tokamak), is arranged in a two-stage seriesparallel structure. A fully automatic c...A large-scale compressor set of a 2 kW helium cryoplant, as one of the subsystems of EAST (the experimental advanced superconducting tokamak), is arranged in a two-stage seriesparallel structure. A fully automatic control system used to handle the compressors' on/off/ scheduling and the pressures' adjustment was developed. To reduce the long time lag and the uncertainty with the energy slide valves effectively, expert rules in combination with proportional- integral-derivative (PID) algorithms were applied nisms were built up to reinforce its stability and to the EAST operations and is operated stably. system, such as the big overshoot of pressure and Safety protection and status analysis mecha- robustness. The new system has been applied The problems in the previous semi-automatic complexity of the operations, were solved.展开更多
Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incyli...Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incylinder post-injection-based active DPF regeneration can increase engine oil dilution,thus affecting engine lubrication.Using a 4-cylinder turbocharged direct-injection diesel engine,this study analyzed the effect of lubricating oil on the formation and properties of turbocharger compressor soot deposits associated with engine oil dilution.Three diesel engine lubricating oils(CJ-4,CK-4,and CJ-4*)were selected,with each subjected to 200 hours of engine bench testing at 8%oil dilution.The composition of CJ-4*was the same as that of CJ-4 but with reduced amount of additives.Soot deposits were collected and analyzed.A merit calculation method was established to rate turbocharger deposits.Transmission electron microscopy,Raman spectroscopy,Fourier transform infrared spectroscopy,and thermogravimetric analysis(TGA)were used to characterize the morphology and composition of soot samples.The results showed that turbocharger deposits from CJ-4 and CK-4 were less than that from CJ-4*.The deposits from CJ-4*showed a more disordered morphology,whereas those from CJ-4 and CK-4 exhibited a higher degree of order.TGA results showed that the soluble organic fraction content in the deposit derived from CJ-4*was much higher than that obtained from CJ-4 and CK-4.展开更多
A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compres...A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compressor stability.Different geometric structures of micro tip injection have been investigated,including the axial positions of injector port,injected mass flow rate and injector diameter.First,seven designed micro tip injection structures and one solid wall casing are tested in the compressor test rig to elucidate the influence of different micro tip injection parameters on the compressor stability.Then,numerical simulations are conducted to analyze the underlying flow mechanisms of micro tip injection with different design parameters on enhancing the compressor stability.The experimental and numerical investigation reveal that when the injection port is located upstream of the low-speed region,the compressor stability is significantly enhanced.The tip injection with larger injected mass flow can obtain higher stall margin improvement.Smaller injector diameter produces higher injection momentum and velocity,contributing to greater improvement on the compressor stability.展开更多
Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifu...Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifugal compressor rotor operated with a rotor tip speed of 586 m/s.Eight different injection yaw angle with four different injection mass flow was performed to determine the configuration that provide the best results for the compression system studied in this work.The injection angle,α,was fifteen degree and the injectors were placed at short distance(ten percent of the inlet tip radius upstream of the compressor face) to achieve maximum control over the leading edge flow by varying individual injection parameters.The results show that at design speed(n=50 000 r/min) with injection flow rate more than 2% of the main flow rate and yaw angle between 20° and 30°,the mass flow rate at stall decreases for approximately 8%.But with higher injection rate,other compressor parameters were affected such as compressor efficiency and compressor total pressure ratio.展开更多
A three-dimensional Navier-Stokes solver is used to investigate the separation and superposition of the influences from upstream and downstream rotors in an axial-radial combined compressor for unsteady design applica...A three-dimensional Navier-Stokes solver is used to investigate the separation and superposition of the influences from upstream and downstream rotors in an axial-radial combined compressor for unsteady design applications. The data from rotor/stator and stator/rotor configurations show that the unsteady flow response in axial stator passage is caused only by one rotor. The results from the rotor/stator/rotor configuration revealed the superimposed characteristic of influences from upstream and downstream the rotor. The impact of the superimposed characteristic was studied by analyzing the virtual relative flow angle at the stator exit. The results show that the axial velocity in the passage of axial stator can be influenced by wake from upstream axial rotor and potential field of downstream radial rotor. While they are coupled to have an effect on the unsteady flow in axial statot passage, the excitation or suppression phenomena appear and lead to different levels of deterministic fluctuation kinetic energy. Their locations are determined by the frequencies of the involved influences. In addition, the variability of superimposed characteristic ( excitation and suppression) at the stator exit modulates the inlet flow angle for downstream rotor.展开更多
A C-band RF pulse compressor is in development at SINAP It comprises of two resonant cavities,two mode convertors and a 3 dB power divider.TE_(0.1.15)mode is selected for obtaining higher quality factor Q_0 of the RF ...A C-band RF pulse compressor is in development at SINAP It comprises of two resonant cavities,two mode convertors and a 3 dB power divider.TE_(0.1.15)mode is selected for obtaining higher quality factor Q_0 of the RF pulse compressor cavities,so that the power gain factor can be 3.2,which is supposed to multiply the RF power from 50 MW to 1 60 MW.In this paper,we report our work on C-band RF pulse compressor,namely the design simulation and cold test results.展开更多
Viscoelastic anticorrosive tape is extensively used for repairing anticorrosive layers on compressor outlet pipelines in the oil and gas industry.However,there is no relevant research on the coupling effect of tempera...Viscoelastic anticorrosive tape is extensively used for repairing anticorrosive layers on compressor outlet pipelines in the oil and gas industry.However,there is no relevant research on the coupling effect of temperature and vibration on the performance of viscoelastic anticorrosive tape.In this paper,acceleration tests of temperature and vibration coupling conditions were conducted to investigate the performance of viscoelastic anticorrosive tape.After temperature and vibration treatment,the specimens showed wide variance in thickness,and the adhesion and chemical soaking resistance of the tape was reduced.However,the viscoelastic anticorrosive tape still showed high adhesion.According to theoretical calculations,the tested viscoelastic body can repair pipes with a maximum diameter of 903 mm.Therefore,this viscoelastic anticorrosive tape is suitable for the compressor outlets of buried pipelines with diameters smaller than 903 mm.The research in this paper provides a method and basis for the selection of repairing materials for the anticorrosion coatings of compressor outlet pipelines.展开更多
Based on the experiment of onset of nucleate boiling(ONB)in natural circulation and the nonequilibrium thermodynamics dissipative theory,the mechanism of ONB in narrow rectangle channels of natural circulation is prop...Based on the experiment of onset of nucleate boiling(ONB)in natural circulation and the nonequilibrium thermodynamics dissipative theory,the mechanism of ONB in narrow rectangle channels of natural circulation is proposed.It points out that the onset of nucleate boiling is influenced by the degree of superheat and the special conditions of narrow channels.Under the conditions of both density difference in natural circulation and narrow rectangle channels,the prediction model of ONB in natural circulation of narrow channels based on fluctuating is established.The experimental results show that the present model can be used to predict the heat flux of ONB in narrow rectangle channels.Features of ONB in natural circulation narrow rectangle channels are as follows:heating power is the incentive of the happen of ONB;the higher the heating power is,the higher the degree of superheat is,and the earlier the ONB will appear.With the pressurizing,the appearance of ONB will be delayed.The higher the degree of supercooling is,the later the ONB appears.The ONB will happen easier when there are noncondensable gases and roughness in the channels.展开更多
The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the...The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .展开更多
A high speed and small mass-flow-rate centrifugal compressor with original and modified volute tongue shape was simulated by 3D viscous Navier-Stokes equations.A sharp and a round tongue of volute were modeled to comp...A high speed and small mass-flow-rate centrifugal compressor with original and modified volute tongue shape was simulated by 3D viscous Navier-Stokes equations.A sharp and a round tongue of volute were modeled to compare their pressure ratios and efficiency characteristics.The flow fields around volute tongues were investigated;the velocity and pressure distributions of volute inlet were studied by unsteady simulation.Static pressure fluctuation near volute tongue was monitored and transformed into amplitude spectrum to identify blade passing frequency influence.The results show that the tongue simplification can cause certain difference on pressure ratio and efficiency.The pressure and velocity distribution of volute inlet indicate obvious circumferential distortion due to volute tongue especially at low mass flow rate.In addition,the static pressure pulsation of volute inlet and the noise level in diffuser and volute increase significantly under low mass flow operating condition.展开更多
Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission...Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.展开更多
This paper reports experimental results on the effects of plasma aerodynamic actua- tion (PAA) on corner separation control in a highly loaded, low speed, linear compressor cascade. Total pressure loss coefficient d...This paper reports experimental results on the effects of plasma aerodynamic actua- tion (PAA) on corner separation control in a highly loaded, low speed, linear compressor cascade. Total pressure loss coefficient distribution was adopted to evaluate the corner separation control effect in wind tunnel experiments. Results of pressure measurements and particle image velocime- try (PIV) show that the control effect of pitch-wise PAA on the endwall is much better than that of stream-wise PAA on the suction surface. When both the pitch-wise PAA on the endwall and stream-wise PAA on the suction surface are turned on simultaneously, the control effect is the best among all three PAA types. The mechanisms of nanosecond discharge and microsecond discharge PAA are different in corner separation control. The control effect of microsecond discharge PAA turns out better with the increase of discharge voltage and duty cycle. Compared with microsec- ond discharge PAA, nanosecond discharge PAA is more effective in preventing corner separation when the freestream velocity increases. Frequency is one of the most important parameters in plasma flow control. The optimum excitation frequency of microsecond discharge PAA is 500 Hz, which is different from the frequency corresponding to the case with a Strouhal number of unity.展开更多
In order to study the effects of wet compression on a transonic compressor,a full 3-D steady numerical simulation was carried out under varying conditions.Different injected water flow rates and droplet diameters were...In order to study the effects of wet compression on a transonic compressor,a full 3-D steady numerical simulation was carried out under varying conditions.Different injected water flow rates and droplet diameters were considered.The effect of wet compression on the shock,separated flow,pressure ratio,and efficiency was investigated.Additionally,the effect of wet compression on the tip clearance when the compressor runs in the near-stall and stall situations was emphasized.Analysis of the results shows that the range of stable operation is extended,and that the pressure ratio and inlet air flow rate are also increased at the near-stall point.In addition,it seems that there is an optimum size of the droplet diameter.展开更多
This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of ...This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.展开更多
This study presents the RF design of a linear accelerator(linac)operated in single-bunch mode.The accelerator is powered by a compressed RF pulse produced from a SLED-I type RF pulse compressor.The compressed RF pulse...This study presents the RF design of a linear accelerator(linac)operated in single-bunch mode.The accelerator is powered by a compressed RF pulse produced from a SLED-I type RF pulse compressor.The compressed RF pulse has an unflattened shape with a gradient distribution which varies over the structure cells.An analytical study to optimize the accelerating structure together with the RF pulse compressor is performed.The optimization aims to maximize the efficiency by minimizing the required RF power from the generator for a given average accelerating gradient.The study shows that,owing to the compressed RF pulse shape,the constant-impedance structure has a similar efficiency to the optimal structure using varying iris apertures.The constant-impedance structure is easily fabricated and is favorable for the design of a linac with a pulse compressor.We utilize these findings to optimize the RF design of a X-band linac using the constant-impedance accelerating structure for the Tsinghua Thomson X-ray source facility.展开更多
An automatic aerodynamic optimization design system for centrifugal compressor impellers is developed. The system utilizes the combined optimization of blade profiles and meridional geometries. In the construction of ...An automatic aerodynamic optimization design system for centrifugal compressor impellers is developed. The system utilizes the combined optimization of blade profiles and meridional geometries. In the construction of objective functions, non-design point performances are considered to realize the performance optimization in whole work ranges of the impeller. An impeller with one row of split blades is redesigned using the proposed optimization system. Results show that for the optimal impeller, the efficiency is obviously improved in the whole mass flow ranges, while the total pressure ratio hardly varies.展开更多
Bled air from the high pressure compressor takes up 3%—5% in the air system.However,there are not many studies on the compressor performance after bleeding.By analyzing the low-speed single-stage compressors,six blee...Bled air from the high pressure compressor takes up 3%—5% in the air system.However,there are not many studies on the compressor performance after bleeding.By analyzing the low-speed single-stage compressors,six bleeding structures are presented according to their influence mechanism on the compressor performance,and five kinds of bleeding rate are applied to one of the structures.A numerical simulation is performed to study the influence of bleeding rates and structures on the compressor performance.The results show that for the stators with the large flow separation in the corner,bleeding a small amount of air from the end-wall region can improve the total pressure increase and the stability margin.Moreover there is an optimum value of the bleeding rate in the stator casing.展开更多
文摘Centrifugal compressors with parallel-wall and contracting wall vaneless diffuser are designed by using centrifugal compressor computer-aided integrated design system. The internal flow fields of the compressor are calculated by solving three-dimensional Navier-Stokes equation. Four aspects are investigated and calculation results show that the total efficiencies and total pressure ratios of the compressor with contracting wall vandess diffuser is higher than that of the compressor with parallel-wall. The jet and wake don't mix rapidly inside vandess diffuser. The outlet blade lean angle doesn't affect the compressor performance. The greater the mass flow rate through impeller, the more uneven the velocity distribution at impeller outlet is.
基金supported by National Natural Science Foundation of China(No.11505237)
文摘Since 2006, the superconducting toroidal field(TF) coils of the Experimental Advanced Superconducting Tokomak(EAST) have been successfully cooled by supercritical helium at a temperature of 4.5 K and a pressure of 4 bara in eleven experiments. To obtain higher operating currents and magnetic fields it is necessary to lower the operating temperature of the TF coils.The EAST sub-cooling helium cryogenic system, with a warm oil ring pump(ORP), was tested twice in cool-down experiments, which made the TF coils operate at 3.8 K. However, the long term operational stability of the sub-cooling system cannot be guaranteed because of the ORP's poor mechanical and control performance. In this paper, the present status of the EAST subcooling helium cryogenic system is described, and then several cooling methods below 4.2 K and their merits are presented and analyzed. Finally, an upgrading method with a cold compressor for an EAST sub-cooling helium cryogenic system is proposed. The new process flow and thermodynamic calculation of the sub-cooling helium system, and the main parameters of the cold compressor, are also presented in detail. This work will provide a reference for the future upgrading of the sub-cooling helium system for higher operation parameters of the EAST device.
基金supported by National Meg-science Engineering Project of the Chinese Government,[1998]1303
文摘A large-scale compressor set of a 2 kW helium cryoplant, as one of the subsystems of EAST (the experimental advanced superconducting tokamak), is arranged in a two-stage seriesparallel structure. A fully automatic control system used to handle the compressors' on/off/ scheduling and the pressures' adjustment was developed. To reduce the long time lag and the uncertainty with the energy slide valves effectively, expert rules in combination with proportional- integral-derivative (PID) algorithms were applied nisms were built up to reinforce its stability and to the EAST operations and is operated stably. system, such as the big overshoot of pressure and Safety protection and status analysis mecha- robustness. The new system has been applied The problems in the previous semi-automatic complexity of the operations, were solved.
基金financially supported by SINOPEC(Grant No.124015)。
文摘Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incylinder post-injection-based active DPF regeneration can increase engine oil dilution,thus affecting engine lubrication.Using a 4-cylinder turbocharged direct-injection diesel engine,this study analyzed the effect of lubricating oil on the formation and properties of turbocharger compressor soot deposits associated with engine oil dilution.Three diesel engine lubricating oils(CJ-4,CK-4,and CJ-4*)were selected,with each subjected to 200 hours of engine bench testing at 8%oil dilution.The composition of CJ-4*was the same as that of CJ-4 but with reduced amount of additives.Soot deposits were collected and analyzed.A merit calculation method was established to rate turbocharger deposits.Transmission electron microscopy,Raman spectroscopy,Fourier transform infrared spectroscopy,and thermogravimetric analysis(TGA)were used to characterize the morphology and composition of soot samples.The results showed that turbocharger deposits from CJ-4 and CK-4 were less than that from CJ-4*.The deposits from CJ-4*showed a more disordered morphology,whereas those from CJ-4 and CK-4 exhibited a higher degree of order.TGA results showed that the soluble organic fraction content in the deposit derived from CJ-4*was much higher than that obtained from CJ-4 and CK-4.
基金supported by National Natural Science Foundation of China(No.52076179)National Science and Technology Major Projects of China(No.J2019-I-0011).
文摘A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compressor stability.Different geometric structures of micro tip injection have been investigated,including the axial positions of injector port,injected mass flow rate and injector diameter.First,seven designed micro tip injection structures and one solid wall casing are tested in the compressor test rig to elucidate the influence of different micro tip injection parameters on the compressor stability.Then,numerical simulations are conducted to analyze the underlying flow mechanisms of micro tip injection with different design parameters on enhancing the compressor stability.The experimental and numerical investigation reveal that when the injection port is located upstream of the low-speed region,the compressor stability is significantly enhanced.The tip injection with larger injected mass flow can obtain higher stall margin improvement.Smaller injector diameter produces higher injection momentum and velocity,contributing to greater improvement on the compressor stability.
基金Supported by Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20091101110014)the National Natural Science Foundation of China (51176013)National High Technology Research and Development Program of China("863" Program) (2007AA050502)
文摘Steady air injection upstream of the leading edge was used to increase the surge margin of a centrifugal compressor.To reveal the mechanism,steady numerical simulations were performed on a high pressure ratio centrifugal compressor rotor operated with a rotor tip speed of 586 m/s.Eight different injection yaw angle with four different injection mass flow was performed to determine the configuration that provide the best results for the compression system studied in this work.The injection angle,α,was fifteen degree and the injectors were placed at short distance(ten percent of the inlet tip radius upstream of the compressor face) to achieve maximum control over the leading edge flow by varying individual injection parameters.The results show that at design speed(n=50 000 r/min) with injection flow rate more than 2% of the main flow rate and yaw angle between 20° and 30°,the mass flow rate at stall decreases for approximately 8%.But with higher injection rate,other compressor parameters were affected such as compressor efficiency and compressor total pressure ratio.
基金Supported by Ministerial Level Advanced Research Foundation(404050301.4)the National Natural Science Foundation of China(51176013)the Chinese Specialized Research Fund for the Doctoral Program of Higher Education(20111101130002)
文摘A three-dimensional Navier-Stokes solver is used to investigate the separation and superposition of the influences from upstream and downstream rotors in an axial-radial combined compressor for unsteady design applications. The data from rotor/stator and stator/rotor configurations show that the unsteady flow response in axial stator passage is caused only by one rotor. The results from the rotor/stator/rotor configuration revealed the superimposed characteristic of influences from upstream and downstream the rotor. The impact of the superimposed characteristic was studied by analyzing the virtual relative flow angle at the stator exit. The results show that the axial velocity in the passage of axial stator can be influenced by wake from upstream axial rotor and potential field of downstream radial rotor. While they are coupled to have an effect on the unsteady flow in axial statot passage, the excitation or suppression phenomena appear and lead to different levels of deterministic fluctuation kinetic energy. Their locations are determined by the frequencies of the involved influences. In addition, the variability of superimposed characteristic ( excitation and suppression) at the stator exit modulates the inlet flow angle for downstream rotor.
基金the Accelerator Laboratory of Tsinghua University for experiment supports
文摘A C-band RF pulse compressor is in development at SINAP It comprises of two resonant cavities,two mode convertors and a 3 dB power divider.TE_(0.1.15)mode is selected for obtaining higher quality factor Q_0 of the RF pulse compressor cavities,so that the power gain factor can be 3.2,which is supposed to multiply the RF power from 50 MW to 1 60 MW.In this paper,we report our work on C-band RF pulse compressor,namely the design simulation and cold test results.
基金supported by the Natural Science Foundation of Shanxi Province,China[grant number 2021JQ-947]the China Postdoctoral Science Fund[grant number 2019M653785]。
文摘Viscoelastic anticorrosive tape is extensively used for repairing anticorrosive layers on compressor outlet pipelines in the oil and gas industry.However,there is no relevant research on the coupling effect of temperature and vibration on the performance of viscoelastic anticorrosive tape.In this paper,acceleration tests of temperature and vibration coupling conditions were conducted to investigate the performance of viscoelastic anticorrosive tape.After temperature and vibration treatment,the specimens showed wide variance in thickness,and the adhesion and chemical soaking resistance of the tape was reduced.However,the viscoelastic anticorrosive tape still showed high adhesion.According to theoretical calculations,the tested viscoelastic body can repair pipes with a maximum diameter of 903 mm.Therefore,this viscoelastic anticorrosive tape is suitable for the compressor outlets of buried pipelines with diameters smaller than 903 mm.The research in this paper provides a method and basis for the selection of repairing materials for the anticorrosion coatings of compressor outlet pipelines.
基金Supported by National Natural Science Foundation of China(No.50976033)National Key Laboratory of Bubble Physics and Natural Circulation(No.9140C7 101030905)North China Electric Power University’s 211 Project
文摘Based on the experiment of onset of nucleate boiling(ONB)in natural circulation and the nonequilibrium thermodynamics dissipative theory,the mechanism of ONB in narrow rectangle channels of natural circulation is proposed.It points out that the onset of nucleate boiling is influenced by the degree of superheat and the special conditions of narrow channels.Under the conditions of both density difference in natural circulation and narrow rectangle channels,the prediction model of ONB in natural circulation of narrow channels based on fluctuating is established.The experimental results show that the present model can be used to predict the heat flux of ONB in narrow rectangle channels.Features of ONB in natural circulation narrow rectangle channels are as follows:heating power is the incentive of the happen of ONB;the higher the heating power is,the higher the degree of superheat is,and the earlier the ONB will appear.With the pressurizing,the appearance of ONB will be delayed.The higher the degree of supercooling is,the later the ONB appears.The ONB will happen easier when there are noncondensable gases and roughness in the channels.
文摘The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .
基金Supported by Chinese Specialized Research Fund for the Doctoral Program of Higher Education(20091101110014)the National Natural Science Foundation of China(51176013)
文摘A high speed and small mass-flow-rate centrifugal compressor with original and modified volute tongue shape was simulated by 3D viscous Navier-Stokes equations.A sharp and a round tongue of volute were modeled to compare their pressure ratios and efficiency characteristics.The flow fields around volute tongues were investigated;the velocity and pressure distributions of volute inlet were studied by unsteady simulation.Static pressure fluctuation near volute tongue was monitored and transformed into amplitude spectrum to identify blade passing frequency influence.The results show that the tongue simplification can cause certain difference on pressure ratio and efficiency.The pressure and velocity distribution of volute inlet indicate obvious circumferential distortion due to volute tongue especially at low mass flow rate.In addition,the static pressure pulsation of volute inlet and the noise level in diffuser and volute increase significantly under low mass flow operating condition.
基金supported by the High Technology Resesarch Development Project of China (863)
文摘Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.
基金supported by National Natural Science Foundation of China(Nos.50906100,10972236)Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201172)
文摘This paper reports experimental results on the effects of plasma aerodynamic actua- tion (PAA) on corner separation control in a highly loaded, low speed, linear compressor cascade. Total pressure loss coefficient distribution was adopted to evaluate the corner separation control effect in wind tunnel experiments. Results of pressure measurements and particle image velocime- try (PIV) show that the control effect of pitch-wise PAA on the endwall is much better than that of stream-wise PAA on the suction surface. When both the pitch-wise PAA on the endwall and stream-wise PAA on the suction surface are turned on simultaneously, the control effect is the best among all three PAA types. The mechanisms of nanosecond discharge and microsecond discharge PAA are different in corner separation control. The control effect of microsecond discharge PAA turns out better with the increase of discharge voltage and duty cycle. Compared with microsec- ond discharge PAA, nanosecond discharge PAA is more effective in preventing corner separation when the freestream velocity increases. Frequency is one of the most important parameters in plasma flow control. The optimum excitation frequency of microsecond discharge PAA is 500 Hz, which is different from the frequency corresponding to the case with a Strouhal number of unity.
基金Supported by the National Natural Science Foundation of China under Grant No.50776021
文摘In order to study the effects of wet compression on a transonic compressor,a full 3-D steady numerical simulation was carried out under varying conditions.Different injected water flow rates and droplet diameters were considered.The effect of wet compression on the shock,separated flow,pressure ratio,and efficiency was investigated.Additionally,the effect of wet compression on the tip clearance when the compressor runs in the near-stall and stall situations was emphasized.Analysis of the results shows that the range of stable operation is extended,and that the pressure ratio and inlet air flow rate are also increased at the near-stall point.In addition,it seems that there is an optimum size of the droplet diameter.
文摘This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.
文摘This study presents the RF design of a linear accelerator(linac)operated in single-bunch mode.The accelerator is powered by a compressed RF pulse produced from a SLED-I type RF pulse compressor.The compressed RF pulse has an unflattened shape with a gradient distribution which varies over the structure cells.An analytical study to optimize the accelerating structure together with the RF pulse compressor is performed.The optimization aims to maximize the efficiency by minimizing the required RF power from the generator for a given average accelerating gradient.The study shows that,owing to the compressed RF pulse shape,the constant-impedance structure has a similar efficiency to the optimal structure using varying iris apertures.The constant-impedance structure is easily fabricated and is favorable for the design of a linac with a pulse compressor.We utilize these findings to optimize the RF design of a X-band linac using the constant-impedance accelerating structure for the Tsinghua Thomson X-ray source facility.
文摘An automatic aerodynamic optimization design system for centrifugal compressor impellers is developed. The system utilizes the combined optimization of blade profiles and meridional geometries. In the construction of objective functions, non-design point performances are considered to realize the performance optimization in whole work ranges of the impeller. An impeller with one row of split blades is redesigned using the proposed optimization system. Results show that for the optimal impeller, the efficiency is obviously improved in the whole mass flow ranges, while the total pressure ratio hardly varies.
基金Supported by the National Natural Science Foundation of China(60934001)~~
文摘Bled air from the high pressure compressor takes up 3%—5% in the air system.However,there are not many studies on the compressor performance after bleeding.By analyzing the low-speed single-stage compressors,six bleeding structures are presented according to their influence mechanism on the compressor performance,and five kinds of bleeding rate are applied to one of the structures.A numerical simulation is performed to study the influence of bleeding rates and structures on the compressor performance.The results show that for the stators with the large flow separation in the corner,bleeding a small amount of air from the end-wall region can improve the total pressure increase and the stability margin.Moreover there is an optimum value of the bleeding rate in the stator casing.