The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
Zirconium alloy(Zr-4)is extensively utilized in nuclear fuel cladding materials due to its exceptional neutron economy,high ductility,and promising corrosion and irradiation resistance.Nevertheless,during the operatio...Zirconium alloy(Zr-4)is extensively utilized in nuclear fuel cladding materials due to its exceptional neutron economy,high ductility,and promising corrosion and irradiation resistance.Nevertheless,during the operational lifespan of the Zr-4 fuel tube,micro-oscillations induced by the high-speed flow of cooling water can cause wear between the cladding tube and grids.This leads to wear failure of the Zr-4 alloy tube,which seriously threatens the safe operation of nuclear stations.The application of protective coatings onto the surface of zirconium alloys serves to enhance their resistance against wear,while without changing of the existing reactor structure.In this study,FeCrAl/CrN and FeCrAl coatings were fabricated on the surface of Zr-4 alloy using dual-target co-sputtering technology.The effects of the CrN interlayer on the microstructure,mechanical properties,and tribological behavior of FeCrAl coating in air and B-Li water were investigated,and a comparative analysis with Zr-4 alloy was conducted.The results showed that the application of FeCrAl/CrN and FeCrAl coatings significantly enhanced the hardness and wear resistance of Zr-4 alloy.The introduction of the CrN interlayer increased the columnar grain size of the FeCrAl coating and caused a change in the preferred growth direction of the coating from(110)to(211).The CrN interlayer improved the hardness and wear resistance of the coating,it also led to a decrease in adhesion strength.The wear rates of FeCrAl/CrN coatings in air and B-Li water were the lowest,about 3.2×10^(-6) mm^(3)/(N·m)and 6.0×10^(-7) mm^(3)/(N·m),respectively.The lubricating effect of B-Li water effectively reduced the friction coefficient and wear rate of both FeCrAl/CrN and FeCrAl coatings.In air and B-Li water,the primary wear mechanisms for Zr-4 are adhesive wear and oxidative wear,while the main wear mechanisms for FeCrAl/CrN and FeCrAl coatings are abrasive wear and oxidative wear.These findings not only provided a theoretical basis for understanding the microstructure and wear performance of FeCrAl coatings but also offered important technical guidance for their practical application in the nuclear industry.展开更多
Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy wi...Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.展开更多
Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive en...Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.展开更多
To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxida...To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxidation stage,CeO_(2) accelerated the formation of a multiphase glass layer on the coating surface.The maximum oxidation rates of CeO_(2)-HfB2-SiC coatings with 1%,3%,and 5%CeO_(2) were 24.1%,20.3%,and 53.2%higher than that of the unmodified HfB2-SiC coating,respectively.In the stable oxidation stage,the maximum oxidation rates of coatings with 1%and 3%CeO_(2) decreased by 31.4%and 21.9%,respectively,demonstrating adequate inert protection.CeO_(2) is a“coagulant”and“stabilizer”in the composite glass layer.However,increasing the CeO_(2) content accelerates the reaction between the SiO_(2) glass phase and SiC,leading to a higher SiO_(2) consumption and reduced self-healing ability of the glass layer.The 1%CeO_(2)-60%HfB2-39%SiC coating showed improved glass layer viscosity and stability,moderate SiO_(2) consumption,and better self-healing ability,significantly boosting the oxidation protection of the coating.展开更多
Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, a...Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, and Raman spectroscopy were used to examine the microstructure and chemical composition of the nanosheets and epoxy coatings. EIS experiment was used to explore the corrosion behaviour of the coatings. The O/C ratio for GO and rGO-SLE was found to be 2.5 and 4.5, indicating a decrease in the carbon content after the reduction of GO, confirming the adsorption of SLE onto the GO nanosheets. The successful reduction of GO in the presence of SLE particles was confirmed by disappearing the C=O peak and a significant decrease in the C-O-C bond intensity. The epoxy/rGO- SLE coatings exhibited the highest double-layer thickness and excellent corrosion resistance compared to neat epoxy and epoxy/GO coatings, emphasizing the significant role of rGO in enhancing the protective performance of epoxy coatings. The highest values for total charge transfer and film resistances and the inhibition efficiency were observed to be 6529 Ω·cm^(2) and 90%, respectively, for the epoxy/rGO-SLE coated steel plate. It was also found that the epoxy/0.15 wt.% rGO-SLE coating demonstrates the best corrosion resistance performance.展开更多
In the process of protecting ferrous materials,aluminum coating usually forms a dense oxide film on the surface of the iron-based alloy.However,the capacity of the sacrificial anode is rather insufficient.In order to ...In the process of protecting ferrous materials,aluminum coating usually forms a dense oxide film on the surface of the iron-based alloy.However,the capacity of the sacrificial anode is rather insufficient.In order to solve this problem,the microstructure and electrochemical corrosion properties of Al-8Si-3Fe-xIn alloy under low chlorine conditions were studied.The results show that indium(In)dissolves to form In^(3+)and In^(+)reverse plating on the surface of the bare substrate to form a passivation film defect.When the In content is high,the segregated In forms an activation point in the form of a cathode phase.In activatesτ_(6)phase to form a micro-couple,which improves the non-uniform corrosion.The In-containing corrosion products at the phase boundary hinder the diffusion of Cl−.With an increase of In content,the self-corrosion potential(Ecorr)of the alloy shifts negatively,and the self-corrosion current density(Jcorr)decreases from 6.477μA/cm^(2)to 1.352μA/cm^(2),and then increases gradually.However,when the In content is 0.1%,the Ecorr of the alloy changes from−0.824 V to−0.932 V,and the Jcorr decreases from 6.477μA/cm^(2)to 4.699μA/cm^(2),suggesting that the use of sacrificial anode will give the best effect.展开更多
Preparing multifunctional coatings with both anti-corrosion and anti-biofouling properties is crucial.Copper has been in the spotlight as an effective biocide,especially in the recent past concerning its impact on cau...Preparing multifunctional coatings with both anti-corrosion and anti-biofouling properties is crucial.Copper has been in the spotlight as an effective biocide,especially in the recent past concerning its impact on causing environmental hazards.Reducing the amount used and increasing its efficiency have become the focus of researchers.The hybridization of titanium dioxide nanoparticles(NPs)with copper metal-organic frameworks(MOFs)can significantly improve antimicrobial performance due to its photocatalytic properties.Composites(TiO_(2)-Cu-BTC)of titanium dioxide nanoparticles and copper 1,3,5-benzenetricarboxylate acid(Cu-BTC),obtained by three up-sampling methods,namely hydrothermal,mechanical stirring,and in-situ growth,were doped into epoxy resin(TiO_(2)-Cu-BTC/EP)to enhance its anticorrosion and antifouling properties.The loaded forms were determined by field emission scanning electron microscopy and confirmed using Fourier infrared spectroscopy and X-ray diffraction spectroscopy.The lethality of the composite coating against Escherichia coli(E.coli)increased by 12%after 3 h of exposure to light,and the impedance value increased by 1×1010Ω.The efficiency of the coating was greatly improved.展开更多
The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.H...The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines pla...Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines plasma-enhanced non-equilibrium magnetron sputtering physical vapor deposition(PEUMS-PVD)and anodization to construct a self-healing three-dimensional Ti/Al-doped TiO_(2)nanotubes/Ti_(3)AlC_(2)coating on the surface of Cu substrates.This novel strategy enhances the corrosion resistance of copper substrates in marine environments,with corrosion current densities of up to 4.5643×10^(−8)A/cm^(2).Among them,the doping of nano-aluminum particles makes the coating self-healing.The mechanistic analysis of the corrosion behaviors during early immersion experiments was conducted using electrochemical noise,and revealed that during the initial stages of coating immersion,uniform corrosion predominates,with a minor occurrence of localized corrosion.展开更多
Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecor...Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.展开更多
Mild steel is commonly used in the construction of Pipeline. The major problem of this Pipeline is corrosion. Effort is make my researchers to combat this problem. In this work Co-deposition of Ni-CoSiO_2 composite co...Mild steel is commonly used in the construction of Pipeline. The major problem of this Pipeline is corrosion. Effort is make my researchers to combat this problem. In this work Co-deposition of Ni-CoSiO_2 composite coating on mild steel was reported with the view to reduce this problem. The SiO_2 was varies from 5 to 25 wt% in the deposition. The microstructure, hardness values and potentiodynamic polarization in simulated sea water were determined. The results show that XRD pattern of the Ni Co deposited mild steel revealed the presence hard phases of NiO, Co_5Ni, Co_2Ni_3, Ni Co5 while that of Ni-CoSiO_2 deposited mild steel revealed the presence harder phases of NiOSiO_2, CoNi_7Si_2, Co_5Ni_2Si_3. The NiCo-25 SiO_2 deposited sample has smaller particle size than Ni-10 Co coating. Coating thickness of 110.7 mm was obtained for Ni-10 Co coating, while coating thickness of 135.7, 157.7, 165.0 mm were obtained at Ni-10 Co-x SiO_2(x=10, 15, 25 wt%). 99.90% corrosion resistance was achieved at Ni-Co-25 SiO_2. This improvement in corrosion resistance after composites coating could be attributed to the hard and fine structure obtained after coating.展开更多
Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene di...Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene dimethylacrylate were used as monomers, Dibenzoyl peroxide as initiator, and cobalt naphthenate, and triethyl amine as promoters. The structures of coating materials were characterized by IR spectra. The thermogravimetric analysis result indicated that the coating materials were of good thermal stability. The mean thickness of single coating measured with screw gauge was ca. 140 μm. The morphologies of uncoated and coated fertilizer granules analyzed by using scanning electron microscopy were changed from porosities and gullies to hills and plain. The release rate of coated compound fertilizers in water could be controlled by the hydrophicity and thickness of coating. The increase in coating hydrophicity caused the increase in release rate of fertilizer. The increase in thickness of coating slowed the release rate.展开更多
This work considered the influence of Cr3 C2 particle loading on microstructure and mechanical properties of Zn-SiC-Cr3 C2 nanocomposite produced via electrocodeposition are investigated. The surface nature of the nan...This work considered the influence of Cr3 C2 particle loading on microstructure and mechanical properties of Zn-SiC-Cr3 C2 nanocomposite produced via electrocodeposition are investigated. The surface nature of the nanocomposite coatings were characterized using scanning electron microscope(SEM)coupled with the energy dispersive spectrometer(EDS). Abrasive wear behaviour and hardness property of Zn-SiC-Cr3 C2 nanocomposite produced were investigated using CERT UMT-2 multi-functional tribological tester and Dura Scan hardness tester. The corrosion property was evaluated through linear polarization approach. The result showed that the coatings exhibited good stability and Cr_3 C_2 nanocomposite loading significantly improved the micro structural performance, hardness property,wear resistance as well as corrosion resistance of the coatings.展开更多
Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,X...Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.展开更多
Ni/n-SiO2 composite coating was electrodeposited by brush-plating with pulse-reverse current(RC). The morphology, hardness, and tribological properties of the coating were investigated and compared with those of Ni ...Ni/n-SiO2 composite coating was electrodeposited by brush-plating with pulse-reverse current(RC). The morphology, hardness, and tribological properties of the coating were investigated and compared with those of Ni and composite coatings electrodeposited with direct current(DC). The results indicate that Ni/n-SiO2 composite coating electrodeposited by RC, because of RC and the nano powders, has denser coating, finer crystal grains, higher hardness(HV650.0, nearly 1.5 times higher than that of Ni coating electrodeposited by DC) and lower friction coefficient(nearly 0.62), as a result, in the wearing experiment, the Ni/n-SiO2 composite coating electrodeposited by RC has the least worn loss. So this kind of coating has better wear resistance. And RC electro brush-plating can be used as a new technology of brush-plating in the area of wear resistance.展开更多
The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with ...The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with an electrochemical work-station supplying a direct current power at potential of -0.8V (vs SCE). The electrolyte consists of 7 mmol·L-1 CaCl2·2H2O, 3 mmol·L-1 Ca(H2PO4)2·H2O and 2.5% H2O2. NaOH and HCl solutions were used to adjust pH value. The deposited samples were characterized by X-ray diffraction and scanning electron microscope. The comparison of the deposits obtained at lower and higher pH values demonstrates that the crystallization process at the interface is favoured by high pH value. With temperature increasing, the deposited hydroxyapatite is occasionally of plate-like shape, and the width and the length of the deposited calcium phosphates at 65 ℃ are larger than those at 55 ℃. Therefore, it is confirmed that the morphology and microstructure of electrochemically deposited calcium phosphates can be regulated. Additionally, the coating formed in electrolyte with H2O2 additive is homogeneous and the evolution of H2 bubble can be eliminated.展开更多
Failures due to high-cycle fatigue have led to a high cost in aerospace engineering over the past few decades.In this paper,the experimental results of the fatigue behavior of compressor blade specimen subjected to re...Failures due to high-cycle fatigue have led to a high cost in aerospace engineering over the past few decades.In this paper,the experimental results of the fatigue behavior of compressor blade specimen subjected to resonance and the effects of a damping hard coating on relieving the fatigue progress are presented.The crack initiation and propagation processes were observed under resonance of the first bending mode by using the resonant frequencies as the indicator.Significant nonlinear features were observed in the spectrum of the blade with a fatigue crack.The finite element model considering the breathing crack was established with nonlinear contact based on the crack localization and size,which was obtained by ultrasonic phased array technology.The simulation results of the vibration behavior of the cracked blade were obtained and consistent with the experimental results.A NiCrAlY coating was deposited on the blade,and increases in the fatigue life were observed under the same condition.The results of this paper can help to better understand the fatigue of a compressor blade subjected to resonance and provide a preference for the application of a damping hard coating on compressor blades.展开更多
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
文摘Zirconium alloy(Zr-4)is extensively utilized in nuclear fuel cladding materials due to its exceptional neutron economy,high ductility,and promising corrosion and irradiation resistance.Nevertheless,during the operational lifespan of the Zr-4 fuel tube,micro-oscillations induced by the high-speed flow of cooling water can cause wear between the cladding tube and grids.This leads to wear failure of the Zr-4 alloy tube,which seriously threatens the safe operation of nuclear stations.The application of protective coatings onto the surface of zirconium alloys serves to enhance their resistance against wear,while without changing of the existing reactor structure.In this study,FeCrAl/CrN and FeCrAl coatings were fabricated on the surface of Zr-4 alloy using dual-target co-sputtering technology.The effects of the CrN interlayer on the microstructure,mechanical properties,and tribological behavior of FeCrAl coating in air and B-Li water were investigated,and a comparative analysis with Zr-4 alloy was conducted.The results showed that the application of FeCrAl/CrN and FeCrAl coatings significantly enhanced the hardness and wear resistance of Zr-4 alloy.The introduction of the CrN interlayer increased the columnar grain size of the FeCrAl coating and caused a change in the preferred growth direction of the coating from(110)to(211).The CrN interlayer improved the hardness and wear resistance of the coating,it also led to a decrease in adhesion strength.The wear rates of FeCrAl/CrN coatings in air and B-Li water were the lowest,about 3.2×10^(-6) mm^(3)/(N·m)and 6.0×10^(-7) mm^(3)/(N·m),respectively.The lubricating effect of B-Li water effectively reduced the friction coefficient and wear rate of both FeCrAl/CrN and FeCrAl coatings.In air and B-Li water,the primary wear mechanisms for Zr-4 are adhesive wear and oxidative wear,while the main wear mechanisms for FeCrAl/CrN and FeCrAl coatings are abrasive wear and oxidative wear.These findings not only provided a theoretical basis for understanding the microstructure and wear performance of FeCrAl coatings but also offered important technical guidance for their practical application in the nuclear industry.
基金National Key Research and Development Program of China(2022YFE0206300)National Natural Science Foundation of China(U21A2081,22075074,22209047)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2024A1515011620)Hunan Provincial Natural Science Foundation of China(2024JJ5068)Foundation of Yuelushan Center for Industrial Innovation(2023YCII0119)。
文摘Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.
基金National Natural Science Foundation of China(12002196,12102140)。
文摘Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.
文摘To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxidation stage,CeO_(2) accelerated the formation of a multiphase glass layer on the coating surface.The maximum oxidation rates of CeO_(2)-HfB2-SiC coatings with 1%,3%,and 5%CeO_(2) were 24.1%,20.3%,and 53.2%higher than that of the unmodified HfB2-SiC coating,respectively.In the stable oxidation stage,the maximum oxidation rates of coatings with 1%and 3%CeO_(2) decreased by 31.4%and 21.9%,respectively,demonstrating adequate inert protection.CeO_(2) is a“coagulant”and“stabilizer”in the composite glass layer.However,increasing the CeO_(2) content accelerates the reaction between the SiO_(2) glass phase and SiC,leading to a higher SiO_(2) consumption and reduced self-healing ability of the glass layer.The 1%CeO_(2)-60%HfB2-39%SiC coating showed improved glass layer viscosity and stability,moderate SiO_(2) consumption,and better self-healing ability,significantly boosting the oxidation protection of the coating.
文摘Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, and Raman spectroscopy were used to examine the microstructure and chemical composition of the nanosheets and epoxy coatings. EIS experiment was used to explore the corrosion behaviour of the coatings. The O/C ratio for GO and rGO-SLE was found to be 2.5 and 4.5, indicating a decrease in the carbon content after the reduction of GO, confirming the adsorption of SLE onto the GO nanosheets. The successful reduction of GO in the presence of SLE particles was confirmed by disappearing the C=O peak and a significant decrease in the C-O-C bond intensity. The epoxy/rGO- SLE coatings exhibited the highest double-layer thickness and excellent corrosion resistance compared to neat epoxy and epoxy/GO coatings, emphasizing the significant role of rGO in enhancing the protective performance of epoxy coatings. The highest values for total charge transfer and film resistances and the inhibition efficiency were observed to be 6529 Ω·cm^(2) and 90%, respectively, for the epoxy/rGO-SLE coated steel plate. It was also found that the epoxy/0.15 wt.% rGO-SLE coating demonstrates the best corrosion resistance performance.
基金Projects(52171003,52271005)supported by the National Science and Technology Major Project of ChinaProject(KYCX23_3032)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘In the process of protecting ferrous materials,aluminum coating usually forms a dense oxide film on the surface of the iron-based alloy.However,the capacity of the sacrificial anode is rather insufficient.In order to solve this problem,the microstructure and electrochemical corrosion properties of Al-8Si-3Fe-xIn alloy under low chlorine conditions were studied.The results show that indium(In)dissolves to form In^(3+)and In^(+)reverse plating on the surface of the bare substrate to form a passivation film defect.When the In content is high,the segregated In forms an activation point in the form of a cathode phase.In activatesτ_(6)phase to form a micro-couple,which improves the non-uniform corrosion.The In-containing corrosion products at the phase boundary hinder the diffusion of Cl−.With an increase of In content,the self-corrosion potential(Ecorr)of the alloy shifts negatively,and the self-corrosion current density(Jcorr)decreases from 6.477μA/cm^(2)to 1.352μA/cm^(2),and then increases gradually.However,when the In content is 0.1%,the Ecorr of the alloy changes from−0.824 V to−0.932 V,and the Jcorr decreases from 6.477μA/cm^(2)to 4.699μA/cm^(2),suggesting that the use of sacrificial anode will give the best effect.
基金Project(52073311) supported by the National Natural Science Foundation of ChinaProject(2023A0505010011) supported by the Guangdong-Hong Kong-Macao Joint Innovation Field Research Foundation,ChinaProject(2021A1515012281) supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘Preparing multifunctional coatings with both anti-corrosion and anti-biofouling properties is crucial.Copper has been in the spotlight as an effective biocide,especially in the recent past concerning its impact on causing environmental hazards.Reducing the amount used and increasing its efficiency have become the focus of researchers.The hybridization of titanium dioxide nanoparticles(NPs)with copper metal-organic frameworks(MOFs)can significantly improve antimicrobial performance due to its photocatalytic properties.Composites(TiO_(2)-Cu-BTC)of titanium dioxide nanoparticles and copper 1,3,5-benzenetricarboxylate acid(Cu-BTC),obtained by three up-sampling methods,namely hydrothermal,mechanical stirring,and in-situ growth,were doped into epoxy resin(TiO_(2)-Cu-BTC/EP)to enhance its anticorrosion and antifouling properties.The loaded forms were determined by field emission scanning electron microscopy and confirmed using Fourier infrared spectroscopy and X-ray diffraction spectroscopy.The lethality of the composite coating against Escherichia coli(E.coli)increased by 12%after 3 h of exposure to light,and the impedance value increased by 1×1010Ω.The efficiency of the coating was greatly improved.
基金Project(52476095)supported by the National Natural Science Foundation of ChinaProject(kq2506013)supported by Changsha Outstanding Innovative Youth Training Program,China。
文摘The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
基金Projects(42106051,42006046,U2106206) supported by the National Natural Science Foundation of ChinaProject(22373501D) supported by Hebei Provincial Key R&D Program,China。
文摘Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines plasma-enhanced non-equilibrium magnetron sputtering physical vapor deposition(PEUMS-PVD)and anodization to construct a self-healing three-dimensional Ti/Al-doped TiO_(2)nanotubes/Ti_(3)AlC_(2)coating on the surface of Cu substrates.This novel strategy enhances the corrosion resistance of copper substrates in marine environments,with corrosion current densities of up to 4.5643×10^(−8)A/cm^(2).Among them,the doping of nano-aluminum particles makes the coating self-healing.The mechanistic analysis of the corrosion behaviors during early immersion experiments was conducted using electrochemical noise,and revealed that during the initial stages of coating immersion,uniform corrosion predominates,with a minor occurrence of localized corrosion.
文摘Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.
文摘Mild steel is commonly used in the construction of Pipeline. The major problem of this Pipeline is corrosion. Effort is make my researchers to combat this problem. In this work Co-deposition of Ni-CoSiO_2 composite coating on mild steel was reported with the view to reduce this problem. The SiO_2 was varies from 5 to 25 wt% in the deposition. The microstructure, hardness values and potentiodynamic polarization in simulated sea water were determined. The results show that XRD pattern of the Ni Co deposited mild steel revealed the presence hard phases of NiO, Co_5Ni, Co_2Ni_3, Ni Co5 while that of Ni-CoSiO_2 deposited mild steel revealed the presence harder phases of NiOSiO_2, CoNi_7Si_2, Co_5Ni_2Si_3. The NiCo-25 SiO_2 deposited sample has smaller particle size than Ni-10 Co coating. Coating thickness of 110.7 mm was obtained for Ni-10 Co coating, while coating thickness of 135.7, 157.7, 165.0 mm were obtained at Ni-10 Co-x SiO_2(x=10, 15, 25 wt%). 99.90% corrosion resistance was achieved at Ni-Co-25 SiO_2. This improvement in corrosion resistance after composites coating could be attributed to the hard and fine structure obtained after coating.
基金Supported by Natural Science Foundation of China(30571086)
文摘Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene dimethylacrylate were used as monomers, Dibenzoyl peroxide as initiator, and cobalt naphthenate, and triethyl amine as promoters. The structures of coating materials were characterized by IR spectra. The thermogravimetric analysis result indicated that the coating materials were of good thermal stability. The mean thickness of single coating measured with screw gauge was ca. 140 μm. The morphologies of uncoated and coated fertilizer granules analyzed by using scanning electron microscopy were changed from porosities and gullies to hills and plain. The release rate of coated compound fertilizers in water could be controlled by the hydrophicity and thickness of coating. The increase in coating hydrophicity caused the increase in release rate of fertilizer. The increase in thickness of coating slowed the release rate.
基金National Research FoundationSurface Engineering Research Centre (SERC)+1 种基金Tshwane University of Technology,Pretoria,South Africa were acknowledge for their supportCovenant University Centre for Research Innovation and Discovery (CUCRID) Ota, Nigeria for the provision of financial support
文摘This work considered the influence of Cr3 C2 particle loading on microstructure and mechanical properties of Zn-SiC-Cr3 C2 nanocomposite produced via electrocodeposition are investigated. The surface nature of the nanocomposite coatings were characterized using scanning electron microscope(SEM)coupled with the energy dispersive spectrometer(EDS). Abrasive wear behaviour and hardness property of Zn-SiC-Cr3 C2 nanocomposite produced were investigated using CERT UMT-2 multi-functional tribological tester and Dura Scan hardness tester. The corrosion property was evaluated through linear polarization approach. The result showed that the coatings exhibited good stability and Cr_3 C_2 nanocomposite loading significantly improved the micro structural performance, hardness property,wear resistance as well as corrosion resistance of the coatings.
基金Project(50721003) supported by Creative Research Group of National Natural Science Foundation of ChinaProject(2009ZX04012-021) supported by the National Major Special Science and Technology Program of China
文摘Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.
文摘Ni/n-SiO2 composite coating was electrodeposited by brush-plating with pulse-reverse current(RC). The morphology, hardness, and tribological properties of the coating were investigated and compared with those of Ni and composite coatings electrodeposited with direct current(DC). The results indicate that Ni/n-SiO2 composite coating electrodeposited by RC, because of RC and the nano powders, has denser coating, finer crystal grains, higher hardness(HV650.0, nearly 1.5 times higher than that of Ni coating electrodeposited by DC) and lower friction coefficient(nearly 0.62), as a result, in the wearing experiment, the Ni/n-SiO2 composite coating electrodeposited by RC has the least worn loss. So this kind of coating has better wear resistance. And RC electro brush-plating can be used as a new technology of brush-plating in the area of wear resistance.
文摘The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with an electrochemical work-station supplying a direct current power at potential of -0.8V (vs SCE). The electrolyte consists of 7 mmol·L-1 CaCl2·2H2O, 3 mmol·L-1 Ca(H2PO4)2·H2O and 2.5% H2O2. NaOH and HCl solutions were used to adjust pH value. The deposited samples were characterized by X-ray diffraction and scanning electron microscope. The comparison of the deposits obtained at lower and higher pH values demonstrates that the crystallization process at the interface is favoured by high pH value. With temperature increasing, the deposited hydroxyapatite is occasionally of plate-like shape, and the width and the length of the deposited calcium phosphates at 65 ℃ are larger than those at 55 ℃. Therefore, it is confirmed that the morphology and microstructure of electrochemically deposited calcium phosphates can be regulated. Additionally, the coating formed in electrolyte with H2O2 additive is homogeneous and the evolution of H2 bubble can be eliminated.
基金Project(DUT20RC(3)014)supported by the Fundamental Research Funds for the Central Universities,China,Project(VCAME201801)supported by Key Laboratory of Vibration and Control of Aero-Propulsion System(Ministry of Education),ChinaProject(11472068)supported by the National Natural Science Foundation of China。
文摘Failures due to high-cycle fatigue have led to a high cost in aerospace engineering over the past few decades.In this paper,the experimental results of the fatigue behavior of compressor blade specimen subjected to resonance and the effects of a damping hard coating on relieving the fatigue progress are presented.The crack initiation and propagation processes were observed under resonance of the first bending mode by using the resonant frequencies as the indicator.Significant nonlinear features were observed in the spectrum of the blade with a fatigue crack.The finite element model considering the breathing crack was established with nonlinear contact based on the crack localization and size,which was obtained by ultrasonic phased array technology.The simulation results of the vibration behavior of the cracked blade were obtained and consistent with the experimental results.A NiCrAlY coating was deposited on the blade,and increases in the fatigue life were observed under the same condition.The results of this paper can help to better understand the fatigue of a compressor blade subjected to resonance and provide a preference for the application of a damping hard coating on compressor blades.