期刊文献+
共找到50,229篇文章
< 1 2 250 >
每页显示 20 50 100
Microwave-enabled rapid,continuous,and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance 被引量:1
1
作者 KONG Ya ZHANG Shi-peng +6 位作者 YIN Yu-ling ZHANG Zi-xuan FENG Xue-ting DING Feng ZHANG Jin TONG Lian-ming GAO Xin 《新型炭材料(中英文)》 北大核心 2025年第3期642-650,共9页
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.... Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies. 展开更多
关键词 Graphdiyne Microwave-assisted synthesis Few-layer Potassium metal battery Dendrite-free
在线阅读 下载PDF
Synthesis,structures,and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid 被引量:1
2
作者 HOU Jimin LI Mengyang +4 位作者 GONG Chunhua ZHANG Shaozhuang ZHAN Caihong XU Hao XIE Jingli 《无机化学学报》 北大核心 2025年第3期549-560,共12页
(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under... (2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4. 展开更多
关键词 bipyridyl ligands metal⁃organic frameworks photocatalytic degradation Knoevenagel condensation
在线阅读 下载PDF
The low-temperature deposition of a zincophilic carbon layer on the Zn foil for long-life zinc metal batteries
3
作者 LI Chun-yu ZHANG Ming-hui +2 位作者 LANG Xin-yue CHEN Ye DONG Yan-feng 《新型炭材料(中英文)》 北大核心 2025年第1期178-187,共10页
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq... Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anodes Low-temperature deposition Zincophilic carbon layer High performance
在线阅读 下载PDF
Metal Nitrides as Cathode Hosts for Lithium-Sulfur Batteries
4
作者 Hai-Ji Xiong Cheng-Wei Zhu +1 位作者 Ding-Rong Deng Qi-Hui Wu 《电化学(中英文)》 北大核心 2025年第2期1-16,共16页
Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of their high theoretical energy density(2600 Wh·kg^(-1))an... Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of their high theoretical energy density(2600 Wh·kg^(-1))and specific capacity(1675 mAh·g^(-1)).Currently,various strategies have been proposed to overcome the technical barriers,e.g.,“shuttle effect”,capacity decay and volumetric change,which impede the successful commercialization of lithium-sulfur batteries.This paper reviews the applications of metal nitrides as the cathode hosts for high-performance lithium-sulfur batteries,summa-rizes the design strategies of different host materials,and discusses the relationship between the properties of metal nitrides and their electrochemical performances.Finally,reasonable suggestions for the design and development of metal nitrides,along with ideas to promote future breakthroughs,are proposed.We hope that this review could attract more attention to metal nitrides and their derivatives,and further promote the electrochemical performance of lithium-sulfur batteries. 展开更多
关键词 Lithium-sulfur batteries metal nitride Host material
在线阅读 下载PDF
Exploration of the Biomedical Functions and Applications of Metal-Polyphenol Network Structures
5
作者 LI Zhining XU Liangge +1 位作者 ZHANG Yuli WANG Chen 《有色金属(中英文)》 北大核心 2025年第9期1460-1482,共23页
The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biom... The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biomedical challenges.Nanomaterials possess distinctive structures and properties.Through the exploration of the fabrication of emerging nanomedicines,multiple functions can be integrated to enable more precise diagnosis and treatment,thereby compensating for the limitations of traditional treatment modalities.Among various substances,polyphenols are natural organic compounds classified as plant secondary metabolites and are ubiquitously present in vegetables,teas,and other plants.Polyphenols are rich in active groups,including hydroxyl,carboxyl,amino,and conjugated double bonds.They exhibit robust adhesion,antioxidant,anti-inflammatory,and antibacterial biological activities and are extensively applied in pharmaceutical formulations.Additionally,polyphenols are characterized by their low cost,ready availability,and do not necessitate intricate chemical synthesis processes.Nevertheless,when natural polyphenol-based nanomedicines are utilized in isolation,they encounter several issues.These include poor water solubility,feeble stability,low bioavailability,the requirement for high dosages,and difficulties in precisely reaching the site of action.To address these concerns,researchers have developed nanomedicines by combining metal ions and functional ligands through metal coordination strategies.Nanomaterials,owing to their unique electronic and optical properties,have been successfully introduced into the realm of medical biology.Nano preparations not only enhance the stability of natural products but also endow them with targeting capabilities,thus enabling precise drug delivery.Polyphenols can further synergize with metal ions,anti-cancer drugs,or photosensitizers via supramolecular interactions to achieve multifunctional synergistic therapies,such as targeted drug delivery,efficacy enhancement,and the construction of engineering scaffolds.Metal-Polyphenol Coordination Polymers(MPCPs),composed of metal ions and phenolic ligands,are regarded as ideal nanoplatforms for disease diagnosis and treatment.In recent years,MPCPs have attracted extensive research in the biomedical field on account of their advantages,including facile synthesis,adjustable structure,excellent biocompatibility,and pH responsiveness.In this review,the classification and preparation strategies of MPCPs were systematically presented.Subsequently,their remarkable achievements in biomedical domains,such as bioimaging,biosensing,drug delivery,tumor therapy,and antimicrobial applications were highlighted.Finally,the principal limitations and prospects of MPCPs were comprehensi vely discussed. 展开更多
关键词 metal polyphenol network NANOTECHNOLOGY NANO-COPPER tumor therapy
在线阅读 下载PDF
Dual-surface capped hydroxyapatite nano-amendment with tuned alternate long-short chain configuration for efficient adsorption towards multi-heavy metal ions in complex-contaminated systems
6
作者 GAO Mochou MENG Shan +7 位作者 ZHANG Jinzhong FENG Wenhua DONG Shuo CHEN Jianping ZHAO Yanbao YU Laigui YING Rongrong ZOU Xueyan 《无机化学学报》 北大核心 2025年第7期1427-1438,共12页
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an... Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides. 展开更多
关键词 heavy metal HYDROXYAPATITE nano-amendment configuration tuning synergistic adsorption
在线阅读 下载PDF
The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries
7
作者 HE Xin ZUO Huai-yang +4 位作者 XIAO Ru QU Zhuo-yan SUN Zhen-hua WANG Bao Li Feng 《新型炭材料(中英文)》 北大核心 2025年第1期167-177,共11页
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit... The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries. 展开更多
关键词 Lithium sulfur batteries Low temperature Transition metal sulfides Sulfur conversion kinetics
在线阅读 下载PDF
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance
8
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction
9
作者 Pei-Pei He Jin-Hua Shi +6 位作者 Xiao-Yu Li Ming-Jie Liu Zhou Fang Jing He Zhong-Jian Li Xin-Sheng Peng Qing-Gang He 《电化学(中英文)》 北大核心 2025年第1期31-40,共10页
The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT... The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2). 展开更多
关键词 metal organic framework CNT intercalated ELECTROCATALYSIS Oxygen reduction reaction Microbial fuel cell
在线阅读 下载PDF
Designing Conformal Electrode-electrolyte Interface by Semi-solid NaK Anode for Sodium Metal Batteries
10
作者 YIN Chunsen CHEN Zeyuan WANG Xiuli 《材料科学与工程学报》 北大核心 2025年第2期191-201,共11页
Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf... Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of sodium-potassium(NaK)alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the physical contact of the electrode-electrolyte interface.Additionally,the filling of SiO_(2) nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 hrs.The full cell coupled with Na_(3)V_(2)(PO_(4))_(2) cathodes had an initial discharge capacity of 106.8 mAh·g^(-1) with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1) even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode. 展开更多
关键词 Solid-state Na metal battery NaK alloy Gel electrolyte Electrode-electrolyte interface dendrite free anode
在线阅读 下载PDF
Advancements in energetic metal-organic frameworks, alkali and alkaline earth metal salts, and transition metal complexes: Predictive models for detonation velocity, heat, and pressure
11
作者 Mohammad Hossein Keshavarz Nasser Hassanzadeh Mohammad Jafari 《Defence Technology(防务技术)》 2025年第7期96-112,共17页
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu... Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models. 展开更多
关键词 metal-organic framework Alkali and alkaline earth metal salt Transition metal complexe Detonation performance Decomposition pathway Predictive reliability
在线阅读 下载PDF
Detonation product analysis and the paradoxical performance mechanism of TKX-50:High detonation velocity with low metal acceleration
12
作者 Kaiyuan Tan Yaqi Zhao +10 位作者 Qin Liu Lixiao Hao Yushi Wen Chunliang Ji Sha Yang Haoxu Wang Luchuan Jia Jiahui Liu Zhuoping Duan Yong Han Fenglei Huang 《Defence Technology(防务技术)》 2025年第4期255-266,共12页
This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimenta... This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimental measurements and theoretical calculations,we propose a novel three-factor competition mechanism to explain this phenomenon.TKX-50-based PBX formulations achieved detonation velocities up to 9100 m/s,surpassing HMX-based counterparts.However,cylinder expansion tests revealed a 15%reduction in metal acceleration ability.Thermochemical measurements showed lower detonation heat for TKX-50(4900 J/g)versus HMX(5645 J/g).Our mechanism involves:(1)compositional effects prevailing at high pressures;(2)Energy release becoming essential as pressure drops;(3)Pressure-dependent product composition evolution functioning at low pressure.VLW code calculations unveiled a"crossover"in Hugoniot curves,lending support to this mechanism.This study furnishes a new framework for comprehending the performance of nitrogen-rich energetic materials,with significant implications for the design and optimization of future high-energy density materials. 展开更多
关键词 TKX-50 Nitrogen-rich explosives Detonation velocity metal acceleration Detonation product
在线阅读 下载PDF
Multi-scale impact resistance of flexible microporous metal rubber:Dynamic energy dissipation mechanism based on dynamic friction locking effect
13
作者 Qiang Song Liangliang Shen +3 位作者 Linwei Shi Ling Pan Ang Wang Zhiying Ren 《Defence Technology(防务技术)》 2025年第9期97-111,共15页
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ... Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance. 展开更多
关键词 Flexible microporous metal rubber Strain rate effect Energy dissipation Dynamic mechanical properties
在线阅读 下载PDF
A review of the experimental and numerical studies on the compression behavior of the additively produced metallic lattice structures at high and low strain rates
14
作者 Muhammad Arslan Bin Riaz Mustafa Guden 《Defence Technology(防务技术)》 2025年第7期1-49,共49页
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in... Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures. 展开更多
关键词 metallic lattice structures Additive manufacturing Strain rate sensitivity MICROSTRUCTURE Dynamic compression High strain rate loading MODELLING
在线阅读 下载PDF
Impact-induced energy release of typical HCP metal/PTFE/W reactive materials:Experimental study and predictive modeling via machine learning
15
作者 Zhenwei Zhang Weixi Tian +7 位作者 Tianyi Wang Zhiyuan Liu Yansong Yang Chao Ge Lei Guo Yuan He Chuanting Wang Yong He 《Defence Technology(防务技术)》 2025年第5期124-138,共15页
Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two t... Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively. 展开更多
关键词 Impact-induced energy release Reactive materials HCP metal/PTFE/W Energy release efficiency Support vector regression
在线阅读 下载PDF
Occurrence and distribution of metals and porphyrins in Nigerian coal minerals 被引量:4
16
作者 OLAJIRE A A AMEEN A B +1 位作者 ABDUL-HAMMED M ADEKOLA F A 《燃料化学学报》 EI CAS CSCD 北大核心 2007年第6期641-647,共7页
The metal contents of Nigerian coal minerals were analyzed using an atomic absorption spectrophotometer. Calcium, Na, and Fe occurred as the major elements with concentrations ranging from 9 782 μg/g for Ca to 432 μ... The metal contents of Nigerian coal minerals were analyzed using an atomic absorption spectrophotometer. Calcium, Na, and Fe occurred as the major elements with concentrations ranging from 9 782 μg/g for Ca to 432 μg/g for Na whereas K, Mg, Mn, Ni, Cr, Zn, Pb, and Cu, which occurred at trace levels ranged from 673.73 μg/g for Mg to 2.97 μg/g for Mn. The results of the quantitative analysis of porphyrins extracted from the coal minerals showed that Onyeama coal has the highest amount of porphyrins (ca~0.96 μg/g) while Okpara has the lowest (ca~0.30 μg/g). The porphyrins were qualitatively characterized by a combination of thin layer chromatography (TLC), infrared, and ultraviolet-visible spectrophotometers. The results of the mid infrared analysis (MIR) showed the presence of absorption bands at 3 440 cm~1~3 450 cm-1 and 1 640 cm-1~1 680 cm-1 , which are owing to the stretching vibrations of N ─ H and C─ C of aromatics, with C─ H out of plane (oop) bending vibrations at wavenumbers less than 900 cm-1, all of which are characteristic absorptions of porphyrin free base. The ultraviolet-visible data showed prominent peaks at ~400 nm(Soret band) and at wavelength ranges of 535 nm~550 nm(β-band) and 565 nm~ 600 nm (α-band) for the coal porphyrins analyzed. The geochemical significance of the metals and porphyrins in coal minerals are discussed. 展开更多
关键词 metals PORPHYRINS COALS TLC ultraviolet-visible and infrared SPECTROPHOTOMETERS
在线阅读 下载PDF
Heavy metals pollution in water,suspended matter and surface sediment in typical mountainous urban river:A case study in Qingshui Stream in Chongqing,China 被引量:4
17
作者 何太蓉 李百战 +1 位作者 李贤良 刘存东 《Journal of Central South University》 SCIE EI CAS 2009年第S1期286-291,共6页
Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stre... Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stream,and samples of suspended matter were obtained by filtrating the water samples. The concentrations of heavy metals (Cd,Cu and Zn) were measured in filtered water,suspended matter,and surface sediment by ICP-AES. The results show that the concentrations of the three heavy metals in filtered water are 0.18,6.6 and 17.67 μg/L,lower than that of the Fresh Water Quality Criteria (US EPA) and those of the plain urban rivers,but the contents of Cd,Cu and Zn are much higher than the mean values of rivers in the world and the background value in Jialing River basin. The heavy metals concentrations in the suspended matter from Qingshui Stream are 2.08,438.14 and 1 348.05 mg/kg,much higher than the corresponding background values of soils in Chongqing city. The heavy metals concentrations in the surface sediment from Qingshui Stream are 0.84,189.75 and 838.23 mg/kg,and the values of index of geoaccumulation Igeo of Cd,Cu and Zn show that their pollution degrees are moderate. The heavy metals exist in three transferable forms such as water,suspended matter and surface sediment in Qingshui Stream. The heavy metals concentrations in water are the lowest,and those in the suspended matter are the highest,so the ecological risk in suspended matter is the highest. The distribution tendencies of three metals in water,suspended matter and surface sediment in main riverbed are different. 展开更多
关键词 heavy metal WATER suspended MATTER surface sediment POLLUTION Qingshui STREAM
在线阅读 下载PDF
Progress in Microwave Technology Applied to the Recovery of Precious Metals from the Secondary Resources 被引量:3
18
作者 WANG Shixing PENG Jinhui +1 位作者 CHEN Anran ZHANG Zebiao 《贵金属》 CAS CSCD 北大核心 2012年第A01期33-39,共7页
The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantag... The recovery of precious metals from the secondary resources by microwave technology has emerged in recent years. Microwave technology as a new method for the recovery of precious metals has shown significant advantages against the conventional recovery procedures. This paper presents a review of the advances in microwave technology applied to the recovery of precious metals from the secondary resources. Many different applications are considered, including microwave-assisted leaching, microwave augmented ashing and microwave pyrolysis. In general, microwave enhanced recovery of precious metals from secondary resources. 展开更多
关键词 MICROWAVE RECOVERY precious metals secondary sources
在线阅读 下载PDF
Frictional characteristics of sheet metals with superimposed ultrasonic vibrations 被引量:10
19
作者 CAO Miao-yan LI Jian-chao +3 位作者 LIU Yan-yang YUAN Ya-ning ZHAO Chang-cai DONG Guo-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1879-1887,共9页
The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibr... The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibrations is performed to explore the cause of the surface effect.The frictional characteristics are investigated,and the corresponding friction expressions are established based on the contact mechanics and the elastic–plastic contact model for rough surfaces.Friction is caused by the elastic–plastic deformation of contacting asperities under normal loads.The actual contacting region between two surfaces increases with normal loads,whereas the normal distance decreases.The normal distance between the contacting surfaces is changed,asperities generate a tangential deformation with ultrasonic vibrations,and the friction coefficient is eventually altered.Ultrasonic vibrations are applied on a 40Cr steel punch at the frequency of 20 kHz and the amplitude of 4.2μm.In the friction tests,the punch is perpendicular to the surface of the magnesium alloy AZ31B sheet metals and is sliding with a relative velocity of 1 mm/s.The test results show that the friction coefficient is decreased by approximately 40%and the theoretical values are in accordance with the test values;Ultrasonic vibrations can clearly reduce wear and improve the surface quality of parts. 展开更多
关键词 FRICTION ultrasonic vibrations sheet metals contact model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部