期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
1
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces sulfides Polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Superhydrophobic Co/Fe sulfide nanoparticles and single-atoms doped carbon nanosheets composite air cathode for high-performance zinc-air batteries
2
作者 Yan Tan Yijie Wang +3 位作者 Aoshuang Li Xiucai Jiang Yuzhong Zhang Chuanwei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期568-577,共10页
Development of a high-performance bifunctional catalyst is essential for the actual implementation of zinc-air batteries in practical applications.Herein,a bifunctional cathode of Co_(3)S_(4)/FeS heterogeneous nanopar... Development of a high-performance bifunctional catalyst is essential for the actual implementation of zinc-air batteries in practical applications.Herein,a bifunctional cathode of Co_(3)S_(4)/FeS heterogeneous nanoparticles embedded in Co/Fe single-atom-loaded nitrogen-doped carbon nanosheets is designed.Cobalt-iron sulfides and single atomic sites with Co-N_(4)/Fe-N_(4)configurations are confirmed to coexist on the carbon matrix by EXAFS spectroscopy.3D self-supported super-hydrophobic multiphase composite cathode provides abundant active sites and facilitates gas–liquid-solid three-phase interface reactions,resulting in excellent electrocatalytic activity and batteries performance,i.e.,an OER overpotential(η_(10))of 260 mV,a half-wave potential(E_(1/2))of 0.872 V for ORR,aΔE of 0.618 V,and a discharge power density of 170 mW cm^(−2),a specific capacity of 816.3 mAh g^(−1).DFT analysis shows multiphase coupling of sulfide heterojunction through single-atomic metal doped carbon nanosheets reduces offset on center of electronic density of states before and after oxygen adsorption,and spin density of adsorbed oxygen with same spin orientation,leading to weakened charge/spin interactions between adsorbed oxygen and substrate,and a lowered oxygen adsorption energy to accelerate OER/ORR. 展开更多
关键词 Zn-air battery Superhydrophobic interface Metal sulfide HETEROSTRUCTURE Spin density
在线阅读 下载PDF
Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
3
作者 王秋辰 黄昱力 +3 位作者 许晶 禹习谦 李泓 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期117-126,共10页
Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid ... Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs. 展开更多
关键词 sulfide electrolytes silicon anodes interface stability degradation kinetics all-solid-state batteries
在线阅读 下载PDF
Internal electric field modulation by copper vacancy concentration of cuprous sulfide nanosheets for enhanced selective CO_(2) photoreduction
4
作者 Xian Shi Weidong Dai +4 位作者 Xiaoqian Li Yang Bai Qin Ren Yao Lei Xing'an Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期324-330,共7页
Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a ch... Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion. 展开更多
关键词 Internal electric field intensity Cuprous sulfide photocatalysts Cu vacancies Charge separation Selective CO_(2) photoreduction
在线阅读 下载PDF
Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over Al_2O_3-K/CAC catalyst at low temperature 被引量:8
5
作者 Xin Sun Ping Ning +6 位作者 Xiaolong Tang Honghong Yi Kai Li Dan He Xianmang Xu Bin Huang Ruiyun Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期221-226,共6页
In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfi... In this work, a series of coal-based active carbon (CAC) catalysts loaded by A1203 were prepared by sol-gel method and used for the simulta- neous catalytic hydrolysis of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, 02 concentration, gas hourly space velocity (GHSV) and relative humidity (RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% A1203 calcined at 300 ℃ had supe- rior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2 was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2 decrease. A small amount of 02 introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2. 展开更多
关键词 carbonyl sulfide carbon disulfide simultaneous catalytic hydrolysis Al2O3-K/CAC catalysts
在线阅读 下载PDF
The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium-sulfur batteries 被引量:4
6
作者 Yun-Wei Song Jin-Lei Qin +5 位作者 Chang-Xin Zhao Meng Zhao Li-Peng Hou Yan-Qi Peng Hong-Jie Peng Bo-Quan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期568-573,I0015,共7页
Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electroca... Lithium-sulfur(Li-S)battery is highly regarded as a promising next-generation energy storage device but suffers from sluggish sulfur redox kinetics.Probing the behavior and mechanism of the sulfur species on electrocatalytic surface is the first step to rationally introduce polysulfide electrocatalysts for kinetic promotion in a working battery.Herein,crystalline lithium sulfide(Li_(2)S)is exclusively observed on electrocatalytic surface with uniform spherical morphology while Li_(2)S on non-electrocatalytic surface is amorphous and irregular.Further characterization indicates the crystalline Li_(2)S preferentially participates in the discharge/charge process to render reduced interfacial resistance,high sulfur utilization,and activated sulfur redox reactions.Consequently,crystalline Li_(2)S is proposed with thermodynamic and kinetic advantages to rati on alize the superior performances of Li-S batteries.The evoluti on of solid Li_(2)S on electrocatalytic surface not only addresses the polysulfide electrocatalysis strategy,but also inspires further investigation into the chemistry of energy-related processes. 展开更多
关键词 Lithium-sulfur batteries Polysulfide electrocatalysis Lithium sulfide Framework porphyrin Sulfur redox reactions
在线阅读 下载PDF
Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries 被引量:4
7
作者 Chenyang Zha Donghai Wu +6 位作者 Yuwei Zhao Jun Deng Jinghua Wu Rong Wu Meng Yang Lin Wang Houyang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期163-169,I0006,共8页
The lithium-sulfur battery has attracted enormous attention as being one of the most significant energy storage technologies due to its high energy density and cost-effectiveness.However,the "shuttle effect"... The lithium-sulfur battery has attracted enormous attention as being one of the most significant energy storage technologies due to its high energy density and cost-effectiveness.However,the "shuttle effect" of polysulfide intermediates represents a formidable challenge towards its wide applications.Herein,we have designed and synthesized two-dimensional Cu,Zn and Sn-based multimetallic sulfide nanosheets to construct multi-active sites for the immobilization and entrapment of polysulfides with offering better performance in liquid Li2S6-based lithium-polysulfide batteries.Both experimental measurements and theoretical computations demonstrate that the interfacial multi-active sites of multimetallic sulfides not only accelerate the multi-chained redox reactions of highly diffusible polysulfides,but also strengthen affinities toward polysulfides.By adopting multimetallic sulfide nanosheets as the sulfur host,the liquid Li2 S6-based cell exhibits an impressive rate capability with 1200 mAh/g and retains 580 mAh/g at 0.5 mA/cm^(2) after 1000 cycles.With high sulfur mass loading conditions,the cell with 2.0 mg/cm^(2) sulfur loading delivers a cell capacity of 1068 mAh/g and maintains 480 mAh/g with 0.8 mA/cm^(2) and 500 cycles.This study provides new insights into the multifunctional material design with multi-active sites for elevated lithium-polysulfide batteries. 展开更多
关键词 Multimetallic sulfide NANOSHEETS Multi-active sites Lithium-polysulfide battery
在线阅读 下载PDF
Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries 被引量:3
8
作者 Xue Liu Qiu He +7 位作者 Hong Yuan Chong Yan Yan Zhao Xu Xu Jia-Qi Huang Yu-Lun Chueh Qiang Zhang Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期109-115,I0004,共8页
The high specific capacity and energy density of lithium-sulfur batteries have attracted strong considerations on their fundamental mechanism and energy applications.However,polysulfide shuttle is still the key issue ... The high specific capacity and energy density of lithium-sulfur batteries have attracted strong considerations on their fundamental mechanism and energy applications.However,polysulfide shuttle is still the key issue that impedes the development of Li-S batteries.Exploring nanocrystal hosts for polysulfide immobilization and conversion is a promising way.In this contribution,we have investigated well-dispersed Co9S8 nanocrystals grown on graphene oxide(GO)nanosheets with different degrees of dispersion as cathode host materials for Li-S batteries.The Co9S8-GO composite with 1 wt%GO(GCS1)has an average crystal size of 76 nm and shows the strongest adsorption capability toward lithium polysulfides.When used as the host material for the cathode of Li-S batteries,the GCS1-sulfur composite exhibits an initial specific capacity of^-1000 mAh g^-1 at 0.5 C and shows an average decay rate of 0.11%for 500 cycles.This work on the dispersion control of Co9S8 nanocrystals may inspire more investigations on well-dispersed nanocrystal based hosts for Li-S batteries. 展开更多
关键词 Metal sulfides Composite sulfur cathode Cobalt sulfides Lithium-sulfur batteries ELECTROCATALYSIS
在线阅读 下载PDF
Single-phase bimetal sulfide or metal sulfide heterojunction:Which one is better for reversible oxygen electrocatalyst? 被引量:1
9
作者 Jingjing Cai Huijun Liu +5 位作者 Yulin Luo Yuqing Xiong Lizhu Zhang Sheng Wang Kang Xiao Zhao-Qing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期420-428,I0012,共10页
Bimetallic sulfides,integrating the merits of individual components,are ideal structures for efficient electrocatalysis.However,for bimetallic sulfides including metal sulfide heterojunctions(MSH)and singlephase bimet... Bimetallic sulfides,integrating the merits of individual components,are ideal structures for efficient electrocatalysis.However,for bimetallic sulfides including metal sulfide heterojunctions(MSH)and singlephase bimetallic sulfides(SBS),it is still unclear about which one has better catalytic activity toward reversible oxygen catalysis and its difference on catalytic mechanism.In this work,we demonstrate a bimetallic sulfide electrocatalyst that could transform from metal sulfide heterojunction(CoS/FeS)to single-phase bimetallic sulfide(CoFeS_(2))through a facile temperature control strategy.The single-phase bimetallic sulfide(CoFeS_(2))affords high intrinsic activity,fast reaction kinetics and superior durability toward oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Density functional theory(DFT)simulations reveal that the(CoFeS_(2))has homogeneous electron distribution of the CoFeS_(2)structure,improves the central energy level of d band,and optimizes the O*and OOH*intermediate and efficiently reduces the energy barrier of the reaction rate-determining step(RDS).The assembled rechargeable zincair battery is more stable than the Pt/C and IrO_(2) assemblies due to the excellent electrocatalytic activity and stability of CoFeS_(2)/NC,suggesting that it has potential for use in practical applications. 展开更多
关键词 Metal sulfide sulfide heterojunction OER ORR Zinc-air batteries
在线阅读 下载PDF
Influence of Gas Components on the Formation of Carbonyl Sulfide over Water-Gas Shift Catalyst B303Q
10
作者 Ju Shangguan Litong Liang Huiling Fan Fang Shen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期53-59,共7页
Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for... Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for water-gas shift reaction. The influences of temperature, space velocity, and gas components on the formation of carbonyl sulfide over sulfided cobalt-molybdenum/alumina catalyst B303Q at 200-400 ℃ were studied in a tubular fixed-bed quartz-glass reactor under simulated water-gas shift conditions. The experimental results showed that the yield of carbonyl sulfide over B303Q catalyst reached a maximum at 220 ℃ with the increase in temperature, sharply decreased with the increase in space velocity and the content of water vapor, increased with the increase in the content of carbon monoxide and carbon dioxide, and its yield increased and then reached a stable value with the increase in the content of hydrogen and hydrogen sulfide. The formation mechanism of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was discussed on the basis of how these factors influence the formation of COS. The yield of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was the combined result of two reactions, that is, COS was first produced by the reaction of carbon monoxide with hydrogen sulfide, and then the as-produced COS was converted to hydrogen sulfide and carbon dioxide by hydrolysis. The mechanism of COS formation is assumed as follows: sulfur atoms in the Co9Ss-MoS2/Al2O3 crystal lattice were easily removed and formed carbonyl sulfide with CO, and then hydrogen sulfide in the water-gas shift gas reacted with the crystal lattice oxygen atoms in CoO-MoOa/Al2O3 to form Co9S8-MoS2/Al2O3. This mechanism for the formation of COS over water-gas shift catalyst B303Q is in accordance with the Mars-Van Krevelen's redox mechanism over metal sulfide. 展开更多
关键词 FORMATION carbonyl sulfide sulfided cobalt-molybdenum/alumina catalyst water-gas shift
在线阅读 下载PDF
Endogenous hydrogen sulfide and ERK1/2-STAT3 signaling pathway may participate in the association between homocysteine and hypertension 被引量:8
11
作者 Lin SHI Xiao-Yun LIU +4 位作者 Zhi-Gang HUANG Zhi-Yi MA Yang XI Lu-Yan WANG Ning-Ling SUN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2019年第11期822-834,共13页
Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical... Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway. 展开更多
关键词 ANGIOTENSIN CONVERTING ENZYME 1 Blood pressure ERK1/2-STAT3 signaling pathway HOMOCYSTEINE Hydrogen sulfide
在线阅读 下载PDF
Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries 被引量:13
12
作者 Yirong Zhu Jingying Li +6 位作者 Xiaoru Yun Ganggang Zhao Peng Ge Guoqiang Zou Yong Liu Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期1-18,共18页
Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w... Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials. 展开更多
关键词 Energy storage Alkaline aqueous batteries Carbon quantum dot Nickel cobalt sulfide
在线阅读 下载PDF
Kinetics of hydrogen sulfide decomposition in a DBD plasma reactor operated at high temperature 被引量:7
13
作者 E.Linga Reddy J.Karuppiah Ch.Subrahmanyam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期382-386,共5页
The present study investigates the kinetics of hydrogen sulfide (H2S) decomposition into hydrogen and sulfur carded out in a nonthermal plasma dielectric barrier discharge (NTP-DBD) reactor operated at ,-430 K for... The present study investigates the kinetics of hydrogen sulfide (H2S) decomposition into hydrogen and sulfur carded out in a nonthermal plasma dielectric barrier discharge (NTP-DBD) reactor operated at ,-430 K for in situ removal of sulfur condensed inside the reactor walls. The dissociation of H2S was primarily initiated by the excitation of carder gas (At) through electron collisions which appeared to be the rate determining step. The experiments were carded out with initial concentration of H2S varied between 5 and 25 vol% at 150 mL/min (at standard temperature and pressure) flow rate in the input power range of 0.5 to 2 W. The reaction rate model based on continuous stirred tank reactor (CSTR) model failed to explain the global kinetics of H2S decomposition, probably due to the multiple complex reactions involved in H2S decomposition, whereas Michaelis-Menten model was satisfactory. Typical results indicated that the reaction order approached zero with increasing inlet concentration. 展开更多
关键词 dielectric barriar discharge hydrogen sulfide KINETICS temperature
在线阅读 下载PDF
In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors 被引量:5
14
作者 Na Liu Zhenghui Pan +6 位作者 Xiaoyu Ding Jie Yang Guoguang Xu Linge Li Qi Wang Meinan Liu Yuegang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期209-215,共7页
Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low vo... Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low volumetric capacitance and narrow operating voltage.In this work,vertically aligned nickel cobalt sulfide(Ni Co2S4)nanowires grown on carbon nanotube(CNT)fibers were achieved through an in-situ two-step hydrothermal reaction method.The as-prepared Ni Co2S4@CNT fiber electrode exhibits a high volumetric capacitance of 2332 F cm-3,benefiting from its superior electric conductivity,large surface area,and rich Faradic redox reaction sites.Furthermore,a Ni Co2S4@CNT//VN@CNT(vanadium nitride nanosheets grown on CNT fibers)asymmetric fiber-supercapacitor(AFSC)was successfully fabricated.The device exhibits an operating voltage up to 1.6 V and a high volumetric energy density of 30.64m Wh cm-3.The device also possesses outstanding flexibility as evidenced by no obvious performance degradation under various bending angles and maintaining high capacitance after 5000 bending cycles.This work promotes the practical application of flexible wearable energy-storage devices. 展开更多
关键词 Fiber-supercapacitors Volumetric energy density NICKEL COBALT sulfide NANOWIRES Carbon nanotube FIBER Wearable energy storage devices
在线阅读 下载PDF
Removal of carbonyl sulfide from CO_2 stream using AgNO_3-modified NaZSM-5 被引量:5
15
作者 Yanjun Wang Shaoyun Chen +2 位作者 Heng Chen Xingzhou Yuan Yongchun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期902-906,共5页
Removal of carbonyl sulfide(COS) from CO2 stream is significant for the production and utilization of food grade CO2. This study investigates the adsorption performance of Ag/NaZSM-5 as adsorbent prepared by incipient... Removal of carbonyl sulfide(COS) from CO2 stream is significant for the production and utilization of food grade CO2. This study investigates the adsorption performance of Ag/NaZSM-5 as adsorbent prepared by incipient wetness impregnation for the removal of COS from a CO2 stream in a fixed-bed adsorption apparatus. Effects of various conditions on the preparation of adsorbent, adsorption and desorption were intensively examined. The results revealed that COS can be removed to below 1×10-9from a CO2stream(1000 ppm COS/CO2) using Ag/NaZSM-5(10 wt% AgNO3) with an adsorption capacity of 12.86 mg·g-1. The adsorbent can be fully regenerated using hot air at 450 C. The adsorption ability remained stable even after eight cycles of regeneration. 展开更多
关键词 carbonyl sulfide adsorption π-complexation completely regeneration Ag-modified adsorbents
在线阅读 下载PDF
The application of nanostructured transition metal sulfides as anodes for lithium ion batteries 被引量:12
16
作者 Jinbao Zhao Yiyong Zhang +2 位作者 Yunhui Wang He Li Yueying Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1536-1554,共19页
With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretic... With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid tothe transition metal sulfides. Recently, a large amount of research papers have reported about the appli-cation of transition metal sulfides in lithium ion batteries. However, the practical application of transitionmetal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focusedresearches should be operated towards the commercialization of transition metal sulfides in lithium ionbatteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteriesis presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transitionmetal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a fur-ther understanding of the associated electrochemical processes are also discussed. 展开更多
关键词 Transition metal sulfides Lithium ion batter ANODE
在线阅读 下载PDF
Cobalt Sulfide Confined in N-Doped Porous Branched Carbon Nanotubes for Lithium-Ion Batteries 被引量:4
17
作者 Yongsheng Zhou Yingchun Zhu +3 位作者 Bingshe Xu Xueji Zhang Khalid A.Al.Ghanim Shahid Mahboob 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期157-165,共9页
Lithium-ion batteries(LIBs) are considered new generation of large-scale energy-storage devices.However,LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability.In th... Lithium-ion batteries(LIBs) are considered new generation of large-scale energy-storage devices.However,LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability.In this work,we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes(NBNTs)for LIBs.The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAhg-1 at a current density of 0.1 Ag-1,and was able to maintain a stable reversible discharge capacity of 1109 mAhg-1 at a current density of 0.5 Ag-1 with coulombic efficiency reaching almost 100% for 200 cycles.The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks,the incorporation of nitrogen doping,and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods. 展开更多
关键词 LITHIUM-ION batteries Nitrogen doping COBALT sulfide BRANCHED carbon NANOTUBES
在线阅读 下载PDF
Experimental study of hydrogen sulfide hydrate formation: Induction time in the presence and absence of kinetic inhibitor 被引量:5
18
作者 Yousef Salamat Abdolreza Moghadassi +2 位作者 Mohammad Illbeigi Ali Eslamimanesh Amir H. Mohammadi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期114-118,共5页
In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is ... In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is studied. A novel method namely "sudden cooling" is used for performing the relevant measurements, in which the induction time of H2S hydrate in the presence/absence of PVP and L-tyrosine with different concentrations (100, 500, and 1000 ppm) is determined. As a result, PVP with the concentration of 1000 ppm in aqueous solution is detected as a more suitable material for increasing the induction time of H2S hydrate formation among the investigated kinetic hydrate inhibitors. 展开更多
关键词 hy^ogen sulfide gas hydrates clathrate hydrates kinetic inhibitor induction time sudden cooling
在线阅读 下载PDF
Sensitive absorption measurements of hydrogen sulfide at 1.578 μm using wavelength modulation spectroscopy 被引量:5
19
作者 夏滑 董凤忠 +6 位作者 吴边 张志荣 庞涛 孙鹏帅 崔小娟 韩荦 王煜 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期180-184,共5页
Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into a... Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0–50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy(TDLAS) system for H2 S detection has the feasibility of real-time online monitoring in many applications. 展开更多
关键词 tunable diode laser spectroscopy wavelength modulation hydrogen sulfide detection low absorbance condition
在线阅读 下载PDF
Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries 被引量:4
20
作者 Yu Li Dechao Zhang +5 位作者 Xijun Xu Zhuosen Wang Zhengbo Liu Jiadong Shen Jun Liu Min Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期32-60,共29页
All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electroly... All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development. 展开更多
关键词 All-solid-state batteries Composite cathodes sulfide solid electrolytes INTERFACE
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部