A multipurpose clone plant species, Hippophae rhamniodes has the capacity for indefinite longevity, although under successive drought stress it may often decline or die across large areas. Field trials were con- ducte...A multipurpose clone plant species, Hippophae rhamniodes has the capacity for indefinite longevity, although under successive drought stress it may often decline or die across large areas. Field trials were con- ducted over 2 years to examine the effects of varied irrigation intensities on modular growth and clonal propagation in a semi-arid area. Irrigation levels included a control, as well as two, four and six times the volume of water that was typically received via local annual average precipitation. Irrigation intensity significantly influenced clonal propagation capacity (number of daughter ramets), aboveground modular growth (height, base diameter, and crown width), belowground modular growth included root nodule dry weight, stretching capacity of lateral roots (length of the longest lateral roots, and diameter of first-grade lateral roots), and branching intensity of lateral roots (number of lateral roots bifurcation grade, number of first- grade lateral roots). The modular growth and the density of daughter ramets were small under non-irrigation or low irrigation, and became larger with increased irrigation intensity. Beyond a certain threshold, however, further increases in irrigation intensity resulted in a reversion to the development. The optimal irrigation intensities for growth and propagation were 3.48-5.29 times the volume of nominal local annual average precipitation. There were effects of irrigation intensities on the positive significant correlations between aboveground and belowground modular growths, and on clonal propagation capacities. Under various water treatments, H. rhamnoides may adapt to the environment through the regulation of growth and propagation. We concluded that water shortages act to weaken the growth and propagation of H. rhamniodes plantations.展开更多
Understanding how tree species respond to drought in their natural environment is needed to predict forest adaptation and management practices under global environmental changes.This study was carried out to determine...Understanding how tree species respond to drought in their natural environment is needed to predict forest adaptation and management practices under global environmental changes.This study was carried out to determine and compare physiological and biochemical responses to variations in environmental conditions during summer drought of mixed natural stands of Pinus nigra Arn.subsp.pallasiana(Lamb.)Holmboe and Pinus brutia Ten.Midday xylem water potential(ψmd),water relations,photosynthetic pigments,total soluble sugar and proline contents were investigated during the growing season.ψmd followed a similar seasonal trend in both species but P.nigra subsp.pallasiana had higher ψmd than P.brutia.The ψmd gradually decreased from June,reached its lowest value in August,and then increased again.Gradual decreases in the osmotic potential at turgor loss point(ψnTLP)were observed during the summer.Generally,ψnTLP was lower in P.brutia.Total soluble sugars decreased from April to June for P.brutia,then increased and stayed relatively constant August to October.Similar changes were found at lower values in P.nigra subsp.pallasiana.Prolin accumulation and photosynthetic pigments were higher in P.brutia.The results indicate that physiological and biochemical responses of both species against changing environmental conditions were in different degrees but followed similar trends.P.nigra subsp.pallasiana is more sensitive to summer drought than P.brutia in their natural environment.展开更多
Bifidobacterium longum subsp.infantis and Bifidobacterium adolescentis play important roles in the guts of infants and adolescents,respectively.In this study,using a neonatal rat model,we compared the protective effec...Bifidobacterium longum subsp.infantis and Bifidobacterium adolescentis play important roles in the guts of infants and adolescents,respectively.In this study,using a neonatal rat model,we compared the protective effects of these 2 bifidobacterial species against Salmonella infection.The results demonstrated that B.longum subsp.infantis was more effective than B.adolescentis in alleviating the severity of infection in newborn rats exposed to Salmonella enterica serovar Typhimurium strain SL1344.B.longum subsp.infantis attenuated intestinal inflammation and mucosal damage induced by Salmonella infection,as well as protecting intestinal nerves and intestinal barrier function through TLR4/My D88 signalling.B.longum subsp.infantis also displayed the potential to modulate gut metabolites by promoting the biosynthesis of unsaturated fatty acids(arachidonic acid,eicosapentaenoic acid andα-linolenic acid)and purine metabolism(guanine,adenine,inosine and adenosine),thereby regulating metabolic disturbances.Additionally,the benefits of B.longum subsp.infantis were also observed in the liver,spleen and brain,improving nerve reflexes and suppressing hepatosplenomegaly.Overall,these findings provide novel insights into the prevention and treatment of gutrelated diseases in newborns,highlighting the potentially significant role of B.longum subsp.infantis in clinical applications.展开更多
Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to ...Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to explore the effects of B.longum subsp.infantis supplementation on interferon-beta(IFN-β)secretion and intestinal barrier improvement in growing mice.Female and male mice were orally administered either saline or B.longum subsp.infantis CCFM1269 or I5TI(1×10^(9) CFU/mice per day,n=8)from 1-week-age until 3-,4-,and 5-week-age.RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2'-5'oligoadenylate synthetase(OAS).Additionally,CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway.However,this effect was not observed in 4-and 5-week-old mice.Furthermore,both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-,4-,and 5-week-old mice.In summary,the results of this study suggested that B.longum subsp.infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.展开更多
基金supported by the National Science Foundation of China(31070551/31570609)
文摘A multipurpose clone plant species, Hippophae rhamniodes has the capacity for indefinite longevity, although under successive drought stress it may often decline or die across large areas. Field trials were con- ducted over 2 years to examine the effects of varied irrigation intensities on modular growth and clonal propagation in a semi-arid area. Irrigation levels included a control, as well as two, four and six times the volume of water that was typically received via local annual average precipitation. Irrigation intensity significantly influenced clonal propagation capacity (number of daughter ramets), aboveground modular growth (height, base diameter, and crown width), belowground modular growth included root nodule dry weight, stretching capacity of lateral roots (length of the longest lateral roots, and diameter of first-grade lateral roots), and branching intensity of lateral roots (number of lateral roots bifurcation grade, number of first- grade lateral roots). The modular growth and the density of daughter ramets were small under non-irrigation or low irrigation, and became larger with increased irrigation intensity. Beyond a certain threshold, however, further increases in irrigation intensity resulted in a reversion to the development. The optimal irrigation intensities for growth and propagation were 3.48-5.29 times the volume of nominal local annual average precipitation. There were effects of irrigation intensities on the positive significant correlations between aboveground and belowground modular growths, and on clonal propagation capacities. Under various water treatments, H. rhamnoides may adapt to the environment through the regulation of growth and propagation. We concluded that water shortages act to weaken the growth and propagation of H. rhamniodes plantations.
基金The work was supported by the Suleyman Demirel University,Scientific Research Projects Coordination Unit(Project Number:4513-YL1-15).
文摘Understanding how tree species respond to drought in their natural environment is needed to predict forest adaptation and management practices under global environmental changes.This study was carried out to determine and compare physiological and biochemical responses to variations in environmental conditions during summer drought of mixed natural stands of Pinus nigra Arn.subsp.pallasiana(Lamb.)Holmboe and Pinus brutia Ten.Midday xylem water potential(ψmd),water relations,photosynthetic pigments,total soluble sugar and proline contents were investigated during the growing season.ψmd followed a similar seasonal trend in both species but P.nigra subsp.pallasiana had higher ψmd than P.brutia.The ψmd gradually decreased from June,reached its lowest value in August,and then increased again.Gradual decreases in the osmotic potential at turgor loss point(ψnTLP)were observed during the summer.Generally,ψnTLP was lower in P.brutia.Total soluble sugars decreased from April to June for P.brutia,then increased and stayed relatively constant August to October.Similar changes were found at lower values in P.nigra subsp.pallasiana.Prolin accumulation and photosynthetic pigments were higher in P.brutia.The results indicate that physiological and biochemical responses of both species against changing environmental conditions were in different degrees but followed similar trends.P.nigra subsp.pallasiana is more sensitive to summer drought than P.brutia in their natural environment.
基金supported by the National Natural Science Foundation of China(32021005,32272332)the Fundamental Research Funds for the Central Universities(JUSRP622020,JUSRP51501)+1 种基金the Program of Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu ProvincePostgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_2391)。
文摘Bifidobacterium longum subsp.infantis and Bifidobacterium adolescentis play important roles in the guts of infants and adolescents,respectively.In this study,using a neonatal rat model,we compared the protective effects of these 2 bifidobacterial species against Salmonella infection.The results demonstrated that B.longum subsp.infantis was more effective than B.adolescentis in alleviating the severity of infection in newborn rats exposed to Salmonella enterica serovar Typhimurium strain SL1344.B.longum subsp.infantis attenuated intestinal inflammation and mucosal damage induced by Salmonella infection,as well as protecting intestinal nerves and intestinal barrier function through TLR4/My D88 signalling.B.longum subsp.infantis also displayed the potential to modulate gut metabolites by promoting the biosynthesis of unsaturated fatty acids(arachidonic acid,eicosapentaenoic acid andα-linolenic acid)and purine metabolism(guanine,adenine,inosine and adenosine),thereby regulating metabolic disturbances.Additionally,the benefits of B.longum subsp.infantis were also observed in the liver,spleen and brain,improving nerve reflexes and suppressing hepatosplenomegaly.Overall,these findings provide novel insights into the prevention and treatment of gutrelated diseases in newborns,highlighting the potentially significant role of B.longum subsp.infantis in clinical applications.
基金funded by the National Key R&D Program of China(2021YFD2100700)National Natural Science Foundation of China(32021005)+1 种基金111 project(BP0719028)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to explore the effects of B.longum subsp.infantis supplementation on interferon-beta(IFN-β)secretion and intestinal barrier improvement in growing mice.Female and male mice were orally administered either saline or B.longum subsp.infantis CCFM1269 or I5TI(1×10^(9) CFU/mice per day,n=8)from 1-week-age until 3-,4-,and 5-week-age.RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2'-5'oligoadenylate synthetase(OAS).Additionally,CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway.However,this effect was not observed in 4-and 5-week-old mice.Furthermore,both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-,4-,and 5-week-old mice.In summary,the results of this study suggested that B.longum subsp.infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.