Global navigation satellite system could provide accurate positioning results in signal complete condition. However, the performance is severe when signal denied, especially for the single-mode Bei Dou receiver. This ...Global navigation satellite system could provide accurate positioning results in signal complete condition. However, the performance is severe when signal denied, especially for the single-mode Bei Dou receiver. This paper proposes a dual-satellite positioning algorithm to promote the positioning performance in the satellite signal gap. The new algorithm utilizes the previous positioning data stored in complete condition to simplify the positioning equations. As the clock bias persists for a short period, this proposed method could work out accurate positioning results by only two visible satellites, without the need of computing the clock bias. Also, the Kalman filtering algorithm is used to smooth the trajectories, and improve the positioning results. During the incomplete period, only two satellites for 30 seconds and three satellites for 60 seconds, the preliminary experiment result shows that, the presented method could provide almost the same positioning results as in complete condition.展开更多
To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region ...To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region is defined, based on which the pairwise significance measure is calculated between the members of each pair classes. Finally the weighted pairwise significance of attribute is used as the attribute reduction criterion, which indicates the necessity of attributes very well. By introducing the noise tolerance factor, the new algorithm can tolerate noise to some extent. Experimental results show the advantages of our novel heuristic reduction algorithm over the traditional attribute dependency based algorithm.展开更多
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,...Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.展开更多
High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which ...High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which leads to the deterioration of system stability and dynamic performance.In order to solve these problems,a new signal demodulation method is proposed in this paper.The proposed new method can directly obtain the amplitude of high-frequency current,thus eliminating the use of filters,improving system stability and dynamic performance and saving the work of adjusting filter parameters.In addition,a new magnetic polarity detection method is proposed,which is robust to current measurement noise.Finally,experiments verify the effectiveness of the method.展开更多
The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite traj...The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite trajectory is obtained by dual quaternion interpolation, then the relative position and attitude of the deputy satellite are ob- tained by dual quaternion modeling on the principal satellite. Through above process, relative position and atti- tude are unified. Compared with the orbital parameter and the quaternion methods, the simulation result proves that the algorithm can unify position and attitude, and satisfy the precision requirement of formation flying satel- lites.展开更多
现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定...现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。展开更多
了解磁结构对于深入探究磁性材料中的磁行为及其相关现象具有至关重要的意义。四维扫描透射电子显微镜(four⁃dimensional scanning transmission electron microscopy,4D⁃STEM)技术的出现,为定量分析磁场提供了一种全新的技术手段,特别...了解磁结构对于深入探究磁性材料中的磁行为及其相关现象具有至关重要的意义。四维扫描透射电子显微镜(four⁃dimensional scanning transmission electron microscopy,4D⁃STEM)技术的出现,为定量分析磁场提供了一种全新的技术手段,特别是通过精确定位衍射盘的位置,来解析磁场在纳米尺度上的分布情况。本文介绍了一款集成了多种衍射盘定位算法的Python程序包,并通过对实验数据的分析,探讨了该程序包中核心算法的性能及其适用场景。展开更多
基金partially supported by the National Natural Science Foundation of China under Grant No.61601296, 61601295, and 61671304
文摘Global navigation satellite system could provide accurate positioning results in signal complete condition. However, the performance is severe when signal denied, especially for the single-mode Bei Dou receiver. This paper proposes a dual-satellite positioning algorithm to promote the positioning performance in the satellite signal gap. The new algorithm utilizes the previous positioning data stored in complete condition to simplify the positioning equations. As the clock bias persists for a short period, this proposed method could work out accurate positioning results by only two visible satellites, without the need of computing the clock bias. Also, the Kalman filtering algorithm is used to smooth the trajectories, and improve the positioning results. During the incomplete period, only two satellites for 30 seconds and three satellites for 60 seconds, the preliminary experiment result shows that, the presented method could provide almost the same positioning results as in complete condition.
基金Sponsored by the Ministerial Level Advanced Research Foundation(11415133)
文摘To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region is defined, based on which the pairwise significance measure is calculated between the members of each pair classes. Finally the weighted pairwise significance of attribute is used as the attribute reduction criterion, which indicates the necessity of attributes very well. By introducing the noise tolerance factor, the new algorithm can tolerate noise to some extent. Experimental results show the advantages of our novel heuristic reduction algorithm over the traditional attribute dependency based algorithm.
基金supported by the National Natural Science Foundation of China (No.42172343)。
文摘Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.
基金supported by the National Natural Science Foundation of China under Grant 51991384Anhui Provincial Major Science and Technology Project under Grant 202203c08020010。
文摘High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which leads to the deterioration of system stability and dynamic performance.In order to solve these problems,a new signal demodulation method is proposed in this paper.The proposed new method can directly obtain the amplitude of high-frequency current,thus eliminating the use of filters,improving system stability and dynamic performance and saving the work of adjusting filter parameters.In addition,a new magnetic polarity detection method is proposed,which is robust to current measurement noise.Finally,experiments verify the effectiveness of the method.
基金Supported by the National Natural Science Foundation of China(60974107)the Research Foundation of Nanjing University of Aeronautics and Astronautics(2010219)~~
文摘The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite trajectory is obtained by dual quaternion interpolation, then the relative position and attitude of the deputy satellite are ob- tained by dual quaternion modeling on the principal satellite. Through above process, relative position and atti- tude are unified. Compared with the orbital parameter and the quaternion methods, the simulation result proves that the algorithm can unify position and attitude, and satisfy the precision requirement of formation flying satel- lites.
文摘现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。
文摘了解磁结构对于深入探究磁性材料中的磁行为及其相关现象具有至关重要的意义。四维扫描透射电子显微镜(four⁃dimensional scanning transmission electron microscopy,4D⁃STEM)技术的出现,为定量分析磁场提供了一种全新的技术手段,特别是通过精确定位衍射盘的位置,来解析磁场在纳米尺度上的分布情况。本文介绍了一款集成了多种衍射盘定位算法的Python程序包,并通过对实验数据的分析,探讨了该程序包中核心算法的性能及其适用场景。