Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The b...Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified cou- ple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.展开更多
Beverloo's scaling law can describe the flow rate of grains discharging from hoppers. In this paper, we show that the Beverloo's scaling law is valid for varying material parameters. The flow rates from a hopp...Beverloo's scaling law can describe the flow rate of grains discharging from hoppers. In this paper, we show that the Beverloo's scaling law is valid for varying material parameters. The flow rates from a hopper with different hopper and orifice sizes(D, D_0) are studied by running large-scale simulations. When the hopper size is fixed, the numerical results show that Beverloo's law is valid even if the orifice diameter is very large and then the criteria for this law are discussed.To eliminate the effect of walls, it is found that the criteria can be suggested as D-D_0≥ 40 d or D/D_0≥ 2. Interestingly,it is found that there is still a scaling relation between the flow rate and orifice diameter if D/D_0 is fixed and less than 2.When the orifice diameter is close to the hopper size, the velocity field changes and the vertical velocities of grains above the free fall region are much larger. Then, the free fall arch assumption is invalid and Beverloo's law is inapplicable.展开更多
文摘Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified cou- ple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705256 and 11605264)
文摘Beverloo's scaling law can describe the flow rate of grains discharging from hoppers. In this paper, we show that the Beverloo's scaling law is valid for varying material parameters. The flow rates from a hopper with different hopper and orifice sizes(D, D_0) are studied by running large-scale simulations. When the hopper size is fixed, the numerical results show that Beverloo's law is valid even if the orifice diameter is very large and then the criteria for this law are discussed.To eliminate the effect of walls, it is found that the criteria can be suggested as D-D_0≥ 40 d or D/D_0≥ 2. Interestingly,it is found that there is still a scaling relation between the flow rate and orifice diameter if D/D_0 is fixed and less than 2.When the orifice diameter is close to the hopper size, the velocity field changes and the vertical velocities of grains above the free fall region are much larger. Then, the free fall arch assumption is invalid and Beverloo's law is inapplicable.