期刊文献+
共找到6,268篇文章
< 1 2 250 >
每页显示 20 50 100
A Structured Methodology for Local Network Design Engineering
1
作者 Li LayuanWuhan University of Water Transportation Engineering, Wuhan 430063, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1992年第1期64-72,共9页
This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using t... This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using the SMLNDE. The SMLNDE allows rigorous requirements definition and permits the exhaustive consideration of the large number of factors influencing local network design engineering. The complete and clear design documentations and an optimal design can also be provided by the methodology. The SMLNDE has been implemented using the structured analysis and design technique. The study shows that the SMLNDE is an effective design methodology for the large and complex local networks. 展开更多
关键词 Local network Design engineering structured methodology.
在线阅读 下载PDF
Learning Bayesian network structure with immune algorithm 被引量:4
2
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
3
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 Bayesian network structure learning ordering search space graph search space prior constraint
在线阅读 下载PDF
System structural analysis of communication networks based on DEMATEL-ISM and entropy 被引量:2
4
作者 FU Kai XIA Jing-bo +1 位作者 ZHANG Xiao-yan SHEN Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第7期1594-1601,共8页
A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of comm... A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method. 展开更多
关键词 communication networkS SYSTEM structurAL analysis decision making trial and evaluation laboratory (DEMATEL) interpretative structurAL modeling (ISM) ENTROPY
在线阅读 下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
5
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ANN) cuckoo search(CS) algorithm
在线阅读 下载PDF
An aerial ammunition ad hoc network collaborative localization algorithm based on relative ranging and velocity measurement in a highly-dynamic topographic structure 被引量:3
6
作者 Hao Wu Peng-fei Wu +2 位作者 Zhang-song Shi Shi-yan Sun Zhong-hong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期231-248,共18页
In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of... In the internet of battlefield things, ammunition is becoming networked and intelligent, which depends on location information. Therefore, this paper focuses on the self-organized network collaborative localization of munitions with an aerial three-dimensional(3D) highly-dynamic topographic structure under a satellite denied environment. As for aerial networked munitions, the measurement of munitions is objectively incomplete due to the degenerated and interrupted link of munitions. For this reason, a cluster-oriented collaborative localization method is put forward in this paper. Multidimensional scaling(MDS) was first integrated with a trilateration localization method(TLM) to construct a relative localization algorithm for determining the relative location of a mobile cluster network. The information related to relative velocity was then combined into a collaborative localization framework to devise a TLM-vMDS algorithm. Finally, an iterative refinement algorithm based on scaling by majorizing a complicated function(SMACOF) was employed to effectively eliminate the influence of incomplete link observation on localization accuracy. Compared with the currently available advanced algorithms, the proposed TLM-vMDS algorithm achieves higher localization accuracy and faster convergence for a cluster of extensively networked munitions, and also offers better numerical stability and robustness for highspeed motion models. 展开更多
关键词 Highly-dynamic topographic structure MDS Relative ranging Aerial ammunition ad hoc network
在线阅读 下载PDF
Using junction trees for structural learning of Bayesian networks 被引量:1
7
作者 Mingmin Zhu Sanyang Liu +1 位作者 Youlong Yang Kui Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期286-292,共7页
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas... The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented. 展开更多
关键词 Bayesian network (BN) junction tree scoring function structural learning conditional independence.
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
8
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 Bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
DHSEGATs:distance and hop-wise structures encoding enhanced graph attention networks 被引量:1
9
作者 HUANG Zhiguo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期350-359,共10页
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi... Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result. 展开更多
关键词 graph attention network(GAT) graph structure information label propagation
在线阅读 下载PDF
Network autoregression model with grouped factor structures
10
作者 ZHANG Zhiyuan ZHU Xuening 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第5期24-37,共14页
Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group stru... Network autoregression and factor model are effective methods for modeling network time series data.In this study,we propose a network autoregression model with a factor structure that incorporates a latent group structure to address nodal heterogeneity within the network.An iterative algorithm is employed to minimize a least-squares objective function,allowing for simultaneous estimation of both the parameters and the group structure.To determine the unknown number of groups and factors,a PIC criterion is introduced.Additionally,statistical inference of the estimated parameters is presented.To assess the validity of the proposed estimation and inference procedures,we conduct extensive numerical studies.We also demonstrate the utility of our model using a stock dataset obtained from the Chinese A-Share stock market. 展开更多
关键词 network autoregression factor structure HETEROGENEITY latent group structure network time series
在线阅读 下载PDF
基于STRUCTURED网的AR模型谱估计方法
11
作者 殷军 朱兆达 《系统工程与电子技术》 EI CSCD 1993年第4期9-14,共6页
本文着重分析了文献[1]中提出的用于求解线性方程组的STRUCTURED同的结构及其所使用的学习算法,改进了STRUCTURED网的收敛性能,并基于STRUCTURED网提出了一种自回归(AR)模型建模方法。这种建模方法的基本思想是用STRUCTURED网求解Yule-W... 本文着重分析了文献[1]中提出的用于求解线性方程组的STRUCTURED同的结构及其所使用的学习算法,改进了STRUCTURED网的收敛性能,并基于STRUCTURED网提出了一种自回归(AR)模型建模方法。这种建模方法的基本思想是用STRUCTURED网求解Yule-Walker型矩阵方程来得到AR模型系数。与现有的其它确定AR模型系数的方法相比,本文方法的优点在于:采用并行处理结构,能直接用VLSI硬件直接实现;不包含常用除法运算,能求解病态Yule-Walker型矩阵方程。 展开更多
关键词 structured 模型 并行处理 算法
在线阅读 下载PDF
Design of Neural Network Variable Structure Reentry Control System for Reusable Launch Vehicle 被引量:3
12
作者 呼卫军 周军 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第3期191-197,共7页
A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of c... A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method.High precise and robust tracking of required attitude angles can be achieved in complicated air space.A mathematical model of reusable launch vehicle is presented first,and then a controller of flight system is presented.Base on the mathematical model,the controller is divided into two parts:variable-structure controller and neural network module which is used to modify the parameters of controller.This control system decouples the lateraldirectional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles.After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters.The final simulation shows that the control system has a good accurate,robust and de-coupled tracking performance.The stable state error is less than 1°,and the overshoot is less than 5%. 展开更多
关键词 飞行技术 自动控制 运输器 神经网络
在线阅读 下载PDF
城市轨道交通线网级电力调度系统应用研究 被引量:1
13
作者 张长开 刘彬 +2 位作者 解凯 李莹 张志学 《城市轨道交通研究》 北大核心 2025年第4期238-242,共5页
[目的]城市轨道交通网络化建设趋势日益明显,作为城市轨道交通核心业务的线网级电力调度系统的研究与发展也得到越来越多的重视,需要对系统软件架构、数据交互、云平台部署等内容进行深入研究。[方法]针对城市轨道交通线网级电力调度系... [目的]城市轨道交通网络化建设趋势日益明显,作为城市轨道交通核心业务的线网级电力调度系统的研究与发展也得到越来越多的重视,需要对系统软件架构、数据交互、云平台部署等内容进行深入研究。[方法]针对城市轨道交通线网级电力调度系统设计了应用和平台相互解耦的系统软件架构,在此基础上,针对平台层的数据库建模技术、数据订阅和发布技术,应用层的网络拓扑分析和数据分片等关键技术进行了较为详细的研究和论述。[结果及结论]系统软件平台和应用解耦以及规范接口定义、数据订阅与发布技术等相关技术的采用,有利于促进后期线网级电力调度应用分析业务的不断扩展。多节点分布式实时数据库采用分片技术,一方面使得线网级电力调度系统更方便在云平台上进行容器化部署,另一方面在不中断业务运行情况下,解决了线网级电力调度系统实时数据库容量随着线路增建需要不断扩容的问题。 展开更多
关键词 城市轨道交通 电力调度系统 系统架构 网络拓扑 云平台
在线阅读 下载PDF
可重构卫星信息网络系统的研究与设计 被引量:1
14
作者 乐浪 徐楠 +3 位作者 陈余军 陈晓 安卫钰 王依一 《计算机工程与设计》 北大核心 2025年第4期1174-1181,共8页
为解决可重构卫星在轨组装过程中信息系统重构的问题,提出一种可重构卫星信息网络系统,基于SpaceWire总线构架,设计可重构信息网络系统的路由器及基于Dijkstra算法的计算机节点寻径算法。当信息网络系统拓扑构架变化后,计算机系统可根... 为解决可重构卫星在轨组装过程中信息系统重构的问题,提出一种可重构卫星信息网络系统,基于SpaceWire总线构架,设计可重构信息网络系统的路由器及基于Dijkstra算法的计算机节点寻径算法。当信息网络系统拓扑构架变化后,计算机系统可根据新构架下各路由器反馈的链路信息配置各路由器的逻辑地址,实时更新各路由器的路由表内容,解决不同功能模块之间互相感知、动态互联的问题。该系统能够满足可重构卫星在轨模块组装与重构时,功能模块之间对接、扩展以及信息网络实时动态构建等要求。 展开更多
关键词 可重构卫星 拓扑构架 信息网络系统 组装与重构 动态互联 自由扩展 动态构建
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
15
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
交通路网密度、研发创新投入与产业结构升级 被引量:1
16
作者 吴永立 吴昱昊 张姣姣 《铁道工程学报》 北大核心 2025年第3期96-101,共6页
研究目的:在我国经济高质量发展进程中,交通路网通过提升运输效率、加快要素流动、增进地区经济联系不断推动产业结构优化升级。本文重点关注以铁路和公路为代表的交通路网密度与研发创新投入对产业结构升级的影响效应,并在此基础上提... 研究目的:在我国经济高质量发展进程中,交通路网通过提升运输效率、加快要素流动、增进地区经济联系不断推动产业结构优化升级。本文重点关注以铁路和公路为代表的交通路网密度与研发创新投入对产业结构升级的影响效应,并在此基础上提出有针对性的政策建议。研究结论:(1)交通路网所产生的时空压缩、经济集聚与知识溢出效应促进产业结构向高级化与合理化方向发展;(2)增大交通路网密度与研发创新投入是产业结构升级的重要渠道;(3)交通路网密度对产业结构升级的作用受产业结构发展阶段及地区经济发展水平的影响,东部地区的交通路网建设有利于产业结构向高级化发展,但却抑制了合理化升级;(4)本研究结论可为进一步增加交通路网密度及研发创新投入,推动产业结构向高级化和合理化方向发展提供参考借鉴。 展开更多
关键词 交通路网密度 研发创新投入 产业结构升级 产业结构高级化 产业结构合理化
在线阅读 下载PDF
结构洞理论视角下的复杂工程支配网络综合项目排序方法 被引量:2
17
作者 张可 刘思敏 +1 位作者 张政 马敏 《系统管理学报》 北大核心 2025年第2期389-399,共11页
复杂工程包含的项目众多,对项目的重要性进行综合排序,是工程实际决策亟须解决的问题。然而,现有方法忽略了项目之间的联系且分析视角单一,导致排序结果区分度不高。为此,基于复杂工程支配网络,提出结构洞理论视角下的综合项目排序方法... 复杂工程包含的项目众多,对项目的重要性进行综合排序,是工程实际决策亟须解决的问题。然而,现有方法忽略了项目之间的联系且分析视角单一,导致排序结果区分度不高。为此,基于复杂工程支配网络,提出结构洞理论视角下的综合项目排序方法。首先,引入结构洞理论,构建项目影响广泛性的度量模型。其次,利用k-shell算法对项目中心度进行重要性评价及层级划分,构建项目的全局重要度评价模型。在此基础上,融合结构洞理论与k-shell算法,提出项目重要性综合排序方法。最后,将该方法应用于算例网络和实际工程,并与其他方法进行了对比分析。结果显示,提出的项目排序方法具有更高的区分度,能够适应项目评价的多维度要求,为复杂工程的决策提供了参考。 展开更多
关键词 工程支配网络 结构洞理论 k-shell算法 项目排序
在线阅读 下载PDF
基于k核分解的网络嵌入
18
作者 张和平 张和贵 +3 位作者 谢晓尧 张太华 张思聪 喻国军 《计算机工程》 北大核心 2025年第2期139-148,共10页
近年来,网络嵌入技术受到了广大研究者的关注。不过大多数网络嵌入算法并未考虑到处于相同层级结构的节点间的结构相似性,这些节点在网络中通常具有相同的重要性。因此,提出一种基于网络层级结构的网络嵌入算法,称为KCNE。KCNE算法使用... 近年来,网络嵌入技术受到了广大研究者的关注。不过大多数网络嵌入算法并未考虑到处于相同层级结构的节点间的结构相似性,这些节点在网络中通常具有相同的重要性。因此,提出一种基于网络层级结构的网络嵌入算法,称为KCNE。KCNE算法使用网络节点间的层级结构信息来保持节点之间的结构相似性。该算法首先基于k核(k-core)分解方法将网络中的节点划分为不同的层级,并且使用定制的随机游走方法为每个节点生成游走序列,该序列可以有效捕获节点的一阶邻域及处于同层级中的高阶相似节点,随后将游走序列输入到Skip-gram模型中,使学习到的节点表示具有更好的区分性。基于多个真实数据集的实验结果表明,在链路预测和节点分类任务上,KCNE算法相比于8个基准算法中的次优算法性能提升最高分别约4%和5%。参数敏感性分析实验也表明了KCNE算法具有较好的鲁棒性。此外,该算法在运行效率方面均优于Role2Vec、RARE和GEMSEC算法。 展开更多
关键词 网络嵌入 结构相似性 随机游走 链路预测 节点分类
在线阅读 下载PDF
基于双重注意力时间卷积长短期记忆网络的短期负荷预测
19
作者 李丽芬 张近月 +1 位作者 曹旺斌 梅华威 《系统仿真学报》 北大核心 2025年第8期2004-2015,共12页
为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相... 为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相关性分析,完成特征筛选以减少模型的计算量,采用滑动窗构建模型的输入。构建DA-TCLSNet预测模型,时间卷积层提取不同时间尺度下的依赖关系、挖掘负荷及天气等数据之间的非线性特征;多头稀疏自注意力层关注重要信息;长短期记忆网络层挖掘时间序列的长期依赖关系;时间模式注意力层实现自适应学习同一时间步上不同变量间的联系,并通过残差结构连接上述模块以提高模型的表达能力。实验结果表明:该方法相比于其他负荷预测方法具有更佳的预测性能。 展开更多
关键词 负荷预测 时间卷积网络 注意力 残差结构 相关性分析
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
20
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部