期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于颜色分割和PSO-RELM算法的花生种子筛选研究
1
作者 杨丽 薛亚许 +1 位作者 李鹏飞 彭信杰 《中国农机化学报》 北大核心 2024年第9期89-96,共8页
针对花生种子人工筛选存在工作量大、效率低等的问题,提出一种基于颜色分割和改进ELM的花生种子筛选算法。根据花生图像的聚类特性,采用限定RGB和HSV颜色空间中颜色范围的方法对花生图像进行颜色分割,获取花生种子图像目标区域。采用颜... 针对花生种子人工筛选存在工作量大、效率低等的问题,提出一种基于颜色分割和改进ELM的花生种子筛选算法。根据花生图像的聚类特性,采用限定RGB和HSV颜色空间中颜色范围的方法对花生图像进行颜色分割,获取花生种子图像目标区域。采用颜色、形状、改进HU矩特征对花生图像进行描述,结合改进HU矩平移、旋转和缩放不变性,对提取到的花生图像特征进行数量扩充,获得花生图像数据集。采用黄金分割法,确定隐含层神经元个数。引入正则化参数,提高ELM算法隐含层神经元与输出层之间连接权值矩阵的稳定性;采用PSO算法,获取最优输入权值和隐含层神经元阈值,构建PSO-RELM算法模型,并与BP、ELM、RELM算法进行比较。试验结果表明,PSO-RELM算法不仅对完好花生有很高的识别准确率(100%),还对破损花生也有很高的识别准确率(96.71%),平均测试时间为0.0068 s,均方根误差为0.0520,决定系数达0.9874,能够满足花生种子筛选的实时性要求。 展开更多
关键词 花生种子筛选 颜色分割 极限学习机 正则化参数 粒子群算法
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:2
2
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于集成型极限学习机的氢燃料电池寿命预测 被引量:6
3
作者 杨淇 陈景文 +4 位作者 华志广 李祥隆 赵冬冬 兰天一 窦满峰 《电工技术学报》 北大核心 2025年第3期964-974,共11页
基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习... 基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习机(EELM)结构,对PEMFC的寿命进行长期预测。集成结构中包含了50次重复测试,通过局部强化优化器算法对每次测试结果进行优化,提升了寿命预测精度。在长期预测的结果中,给出了EELM预测结果的平均值和95%置信区间,提升了系统的鲁棒性。最后采用稳态电流、准动态电流条件和动态电流下的老化数据集验证了所提方法的有效性与可行性。 展开更多
关键词 质子交换膜燃料电池 极限学习机 集成结构 局部强化优化器
在线阅读 下载PDF
基于CEEMDAN多尺度排列熵和SO-RELM的高压隔膜泵单向阀故障诊断 被引量:21
4
作者 李瑞 范玉刚 《振动与冲击》 EI CSCD 北大核心 2023年第5期127-135,共9页
高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研... 高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研究。提取振动信号多尺度排列熵特征,用于建立结构优化正则化极限学习机(structure optimization regularized extreme learning machine, SO-RELM)故障诊断模型,模型利用K-means优化RELM结构,提高模型识别精确度及稳定性。首先采用自适应噪声完备经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将高压隔膜泵单向阀振动信号自适应分解为多个固有模态分量(intrinsic mode function, IMF),以相关系数为指标,优选包含故障特征信息丰富的分量;然后,计算IMFs的多尺度排列熵值,提取信号的非线性动力学特征;最后,基于多尺度排列熵,建立基于SO-RELM的故障诊断模型。试验结果表明,CEEMDAN多尺度排列熵能够准确表征高压隔膜泵单向阀运行状态的非线性动力学特征,基于CEEMDAN多尺度排列熵建立的SO-RELM故障模型,能够有效识别高压隔膜泵单向阀工况类型,准确率达98.89%。 展开更多
关键词 自适应噪声完备经验模态分解 排列熵 结构优化正则化极限学习机 故障诊断
在线阅读 下载PDF
基于数据分解与十种“植物”算法优化的RELM地下水位预测
5
作者 田宇 崔东文 +1 位作者 毛宗波 李锐 《水利水电技术(中英文)》 北大核心 2025年第9期118-130,共13页
【目的】提高地下水位时间序列预测精度对于科学预判地下水位变化趋势、合理开发和利用地下水资源具有重要意义。为提高地下水位时间序列预测精度,解决数据分解组合时间序列预测模型计算规模大、复杂程度高等问题【方法】基于小波包分解... 【目的】提高地下水位时间序列预测精度对于科学预判地下水位变化趋势、合理开发和利用地下水资源具有重要意义。为提高地下水位时间序列预测精度,解决数据分解组合时间序列预测模型计算规模大、复杂程度高等问题【方法】基于小波包分解(WPT)、入侵杂草优化(IWO)算法/花授粉算法(FPA)/树木生长算法(TGA)/向日葵优化(SFO)算法/食肉植物算法(CPA)/蒲公英优化(DO)算法/常春藤算法(IVYA)/青蒿素优化(AO)算法/苔藓生长优化(MGO)算法/莲花效应优化算法(LEA)共十种“植物”算法和正则化极限学习机(RELM),提出基于WPT分解处理的IWO/FPA/TGA/SFO/CPA/DO/IVYA/AO/MGO/LEA-RELM预测模型,并通过云南省西城、南庄、临安、文澜、者林寨、植物园6个地下水位时间序列预测实例对各模型进行验证。首先,利用1层WPT将实例地下水位时间序列分解为趋势项和波动项,并基于趋势项和波动项训练集构建RELM超参数优化实例目标函数;其次,利用十种“植物”算法对实例目标函数进行极值寻优,获得各算法最优超参数;最后,利用最优超参数构建IWO/FPA/TGA/SFO/CPA/DO/IVYA/AO/MGO/LEA-RELM模型对实例地下水位时间序列趋势项和波动项进行预测和重构。【结果】结果显示:IVYA、CPA、FPA寻优性能优于IWO、AO、SFO、DO,远优于LEA、MGO、TGA;IVYA-RELM、CPA-RELM、FPA-RELM模型预测的平均绝对百分比误差(MAPE)在0.0030%~0.0004%之间,平均绝对误差(MAE)在0.0389~0.0063 m之间,决定系数(DC)在0.9977~0.9998之间,预测精度优于其他对比模型,具有较好的预测效果。【结论】结果表明:十种“植物”算法的寻优性能排名与十种组合模型的拟合精度、预测精度排名具有高度的一致性。总体上,算法寻优能力越强,组合模型的拟合、预测精度越高,性能越好;WPT分解分量少、分量规律性强,是一种简介高效的分解方法。 展开更多
关键词 地下水位预测 小波包分解 十种“植物”算法 正则化极限学习机 实例目标函数 超参数优化 影响因素
在线阅读 下载PDF
基于因果正则化极限学习机的风电功率短期预测方法 被引量:11
6
作者 杨茂 张书天 王勃 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期127-136,共10页
随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal reg... 随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal regularized extreme learning machine, CRELM)的风电功率短期预测方法。首先将极限学习机(extreme learning machine, ELM)建模为结构因果模型(structural causal model, SCM),在此基础上计算隐藏层神经元与输出层神经元之间的平均因果效应向量。然后将该平均因果效应向量与输出层权重相结合构成因果正则化项,在最小化训练误差的同时最大化网络的因果关系,以进一步提升模型的预测准确性和预测稳定性。最后,以国内蒙西某风电场数据为例,与采用特征选择或不采用特征选择的预测模型相对比,验证了所提方法的有效性和适用性。 展开更多
关键词 特征选择 因果正则化 结构因果模型 平均因果效应向量 极限学习机
在线阅读 下载PDF
基于WPT-IDBO-RELM和WPT-IDMO-RELM模型的日径流预测 被引量:5
7
作者 李菊 崔东文 《水利水电科技进展》 CSCD 北大核心 2024年第6期48-55,85,共9页
为提高日径流时间序列预测精度,改进正则化极限学习机(RELM)的预测性能,对比验证改进蜣螂优化(IDBO)算法和改进侏獴优化(IDMO)算法与其他算法的优化效果,提出了基于小波包变换(WPT)的WPT-IDBO-RELM和WPT-IDMO-RELM日径流时间序列预测模... 为提高日径流时间序列预测精度,改进正则化极限学习机(RELM)的预测性能,对比验证改进蜣螂优化(IDBO)算法和改进侏獴优化(IDMO)算法与其他算法的优化效果,提出了基于小波包变换(WPT)的WPT-IDBO-RELM和WPT-IDMO-RELM日径流时间序列预测模型。对云南省暮底河水库、马鹿塘电站入库日径流进行预测,结果表明WPT-IDBO-RELM和WPT-IDMO-RELM模型对暮底河水库日径流预测的平均绝对百分比误差分别为1.048%、1.015%,对马鹿塘电站日径流预测的平均绝对百分比误差分别为1.493%、1.478%,优于其他对比模型;IDBO、IDMO算法对标准测试函数和实例目标函数的寻优效果均优于其他对比算法,且IDBO、IDMO算法优化效果越好,RELM超参数越优,WPT-IDBO-RELM、WPT-IDMO-RELM模型预测精度越高;WPT可将日径流序列分解为分量更少、规律性更强的子序列分量,在提高预测精度的同时显著降低模型复杂度和计算规模。 展开更多
关键词 日径流预测 正则化极限学习机 改进蜣螂优化算法 改进侏獴优化算法 小波包变换
在线阅读 下载PDF
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断 被引量:1
8
作者 戚晓利 王兆俊 +3 位作者 毛俊懿 王志文 崔德海 赵方祥 《振动与冲击》 EI CSCD 北大核心 2024年第11期165-175,共11页
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合... 针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合了通道和空间特征的注意力机制CSAM与组卷积残差模块结合,提升该结构的表征能力,由此构建的RegNet-CSAM网络,模型复杂度为0.48GF;其次,在分类阶段将斑马优化核极限学习机(ZOA-KELM)替代原来网络中使用的Softmax函数完成最后的分类任务。滚动轴承故障诊断试验结果表明,RegNet网络对滚动轴承混合故障样本容易产生误判,CSAM的融入虽将RegNet网络的分类精度进一步提高,但是仍然存在一定程度的滚动轴承混合故障误判问题;而将ZOA-KELM替代Softmax函数后再对RegNet-CSAM网络输出特征进行分类,能够有效识别出滚动轴承的单一和混合故障,准确率达到了99.92%。所提方法对比其他网络,诊断精度最大提升5.02%,模型复杂度最大缩减32倍。 展开更多
关键词 故障诊断 滚动轴承 组卷积残差结构 注意力机制 斑马优化核极限学习机(ZOA-KELM)
在线阅读 下载PDF
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测 被引量:6
9
作者 张代凤 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第7期16-24,共9页
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预... 准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预测研究。首先,利用WPT将三峡水库入库日径流时间序列分解为1个周期项分量和1个波动项分量;其次,利用DBO、GTO、MRA分别优化RELM输入层权值和隐含层偏差,建立WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型;最后,利用所建立的3种模型分别对入库日径流周期项分量和波动项分量进行预测和重构,并构建基于极限学习机(ELM)的WPT-DBO-ELM、WPT-GTO-ELM、WPT-MRA-ELM模型、基于BP神经网络的WPT-DBO-BP、WPT-GTO-BP、WPT-MRA-BP模型、未经优化的WPT-RELM、WPT-ELM、WPT-BP模型和未经分解的DBO-RELM、GTO-RELM、MRA-RELM模型作对比分析模型。结果表明:①WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型对三峡水库入库日径流预测的平均绝对百分比误差MAPE分别为0.512%、0.519%、0.762%,平均绝对误差MAE分别为54.05、55.97、86.76 m^(3)/s,均方根误差RMSE分别为84.99、84.81、128.18 m^(3)/s,决定系数DC≥0.9994,希尔不等系数TIC≤0.00517,预测效果优于其他12种模型,具有更高的预测精度和更好的泛化能力。②DBO、GTO、MRA能有效优化RELM网络参数,显著提高RELM预测性能。③引入正则化项的RELM可有效防止预测模型过拟合,提高模型的泛化能力,预测性能优于ELM、BP网络。④所构建的3种模型预测精度高、计算规模小,是一种有效的入库日径流时间序列预测模型。 展开更多
关键词 日径流预测 正则化极限学习机 蜣螂优化算法 珍鲹优化算法 泥环算法 小波包变换 三峡水库
在线阅读 下载PDF
基于IMPA-RELM的旅游景点客流量预测研究
10
作者 占贻畅 秦喜文 +2 位作者 陈冬雪 董小刚 徐定鑫 《工程数学学报》 CSCD 北大核心 2024年第6期1133-1143,共11页
旅游景点客流量预测是旅游管理领域的重要研究问题,关乎着旅游政策制定和旅游景区经营管理。提出了一种基于改进海洋捕食者算法优化正则化极限学习机的旅游景点客流量预测方法。首先,为自适应地平衡探索与开发状态,提出一种基于群体多... 旅游景点客流量预测是旅游管理领域的重要研究问题,关乎着旅游政策制定和旅游景区经营管理。提出了一种基于改进海洋捕食者算法优化正则化极限学习机的旅游景点客流量预测方法。首先,为自适应地平衡探索与开发状态,提出一种基于群体多样性和群体聚集度的海洋捕食者算法,充分发挥MPA算法探索与开发性能。其次,将改进的海洋捕食者算法用于优化正则化极限学习机(IMPA-RELM)的权重与偏置,以归一化均方根误差作为适应度函数,确定最佳权重和偏置参数。最后,将所构建的IMPA-RELM模型应用于九寨沟和查干湖景区单日客流量预测研究。实验结果表明,所提出的IMPA-RELM模型不仅显著提升了RELM的模型性能,相比于LS-SVM、BPNN和LSTM等基线模型,也具有更强的预测性能与泛化能力,能够为景区运营管理和旅游政策制定提供重要参考。 展开更多
关键词 景点客流量预测 海洋捕食者算法 机器学习 正则化极限学习机 参数优化
在线阅读 下载PDF
神经网络极速学习方法研究 被引量:163
11
作者 邓万宇 郑庆华 +1 位作者 陈琳 许学斌 《计算机学报》 EI CSCD 北大核心 2010年第2期279-287,共9页
单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network,SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈.产生这种情况的两个... 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network,SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈.产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(Back Propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定.因此算法的计算量和搜索空间很大.针对以上问题,借鉴ELM的一次学习思想并基于结构风险最小化理论提出一种快速学习方法(RELM),避免了多次迭代和局部最小值,具有良好的泛化性、鲁棒性与可控性.实验表明RELM综合性能优于ELM、BP和SVM. 展开更多
关键词 极速学习机 正则极速学习机 支持向量机 结构风险 神经网络 最小二乘
在线阅读 下载PDF
基于改进流形正则化极限学习机的短期电力负荷预测 被引量:34
12
作者 李冬辉 闫振林 +1 位作者 姚乐乐 郑宏宇 《高电压技术》 EI CAS CSCD 北大核心 2016年第7期2092-2099,共8页
为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机... 为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机;其次,针对流形正则化极限学习机中参数的选择,以及流形正则化极限学习机隐层节点选择的问题,提出将贝叶斯优化算法(BOA)融入到流形正则化极限学习机中以优化流形正则化极限学习机(MRELM)。最后,通过实验数据分析,改进流形正则化极限学习机预测方法将预测平均相对误差降低到了1.903%,30次实验的平均相对误差的方差降低到了1.9‰,平均单次运行时间降低到了6.113 s。 展开更多
关键词 短期电力负荷预测 流形正则化 极限学习机 贝叶斯优化算法 平均相对误差 方差
在线阅读 下载PDF
基于鱼群优化算法和Cholesky分解的RELM的基因表达数据分类 被引量:3
13
作者 陆慧娟 魏莎莎 +1 位作者 关伟 缪燕子 《计算机科学》 CSCD 北大核心 2014年第12期226-230,共5页
提出一种基于鱼群优化算法和Cholesky分解的改进的正则极限学习机算法(FSC-RELM)来对基因表达数据进行分类。FSC-RELM算法中,首先用鱼群优化算法对RELM输入层权值进行优化,其中目标函数定义为误差函数的倒数;再对RELM输出层权值矩阵进... 提出一种基于鱼群优化算法和Cholesky分解的改进的正则极限学习机算法(FSC-RELM)来对基因表达数据进行分类。FSC-RELM算法中,首先用鱼群优化算法对RELM输入层权值进行优化,其中目标函数定义为误差函数的倒数;再对RELM输出层权值矩阵进行分解,采用Cholesky分解法进行优化,以提高算法速度,减少训练时间。为了评价算法性能,对若干标准基因数据集进行了实验,结果表明,FSC-RELM算法在较短的时间内可以获得较高的分类精度,性能优异。 展开更多
关键词 鱼群优化 正则极限学习机 CHOLESKY分解 基因表达数据
在线阅读 下载PDF
基于多目标优化策略的结构损伤识别智能算法 被引量:3
14
作者 刘仁云 于繁华 +3 位作者 张晓丽 赵东 孙秋成 杨宏 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期303-308,共6页
针对结构损伤识别问题,提出一种基于多目标优化策略的结构损伤识别智能算法.该算法利用极端学习机为损伤参数指标与每一阶频率建立非线性函数表达式,先将结构的每一阶实际测量频率与函数表达式相减,再把形成的每个表达式作为优化目标,... 针对结构损伤识别问题,提出一种基于多目标优化策略的结构损伤识别智能算法.该算法利用极端学习机为损伤参数指标与每一阶频率建立非线性函数表达式,先将结构的每一阶实际测量频率与函数表达式相减,再把形成的每个表达式作为优化目标,进而得到结构损伤识别的高维多目标优化模型.为提高模型的求解精度,提出了灰色多粒子群协同的多目标优化算法.实验结果表明,该方法能较好地处理结构损伤识别问题. 展开更多
关键词 多目标优化 极端学习机 灰色多粒子群协同 结构损伤识别
在线阅读 下载PDF
基于IHS_RELM的网络安全态势预测方法 被引量:3
15
作者 陈虹 王飞 肖振久 《计算机科学》 CSCD 北大核心 2013年第11期108-111,共4页
针对网络安全态势感知中的态势预测问题,提出一种基于IHS_RELM的网络安全态势预测方法。对和声搜索算法的原理进行了研究,在此基础上提出一种改进的和声搜索算法。将正则极速学习机(RELM)嵌入到改进的和声搜索算法(IHS)的目标函数计算... 针对网络安全态势感知中的态势预测问题,提出一种基于IHS_RELM的网络安全态势预测方法。对和声搜索算法的原理进行了研究,在此基础上提出一种改进的和声搜索算法。将正则极速学习机(RELM)嵌入到改进的和声搜索算法(IHS)的目标函数计算过程中,利用IHS算法的全局搜索能力来优化选取RELM的输入权值和隐含层阈值,在一定程度上提升了RLLM的学习能力和泛化能力。仿真实验表明,与已有的其他预测方法相比,该方法具有更好的预测效果。 展开更多
关键词 和声搜索算法 正则极速学习机 网络安全态势预测 参数优化
在线阅读 下载PDF
基于粒子群优化极限学习机的排水管结构状况评价 被引量:10
16
作者 郑茂辉 刘少非 +1 位作者 柳娅楠 李浩楠 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期513-516,551,共5页
基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器... 基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器模型进行训练测试,并与ELM分类结果进行对比分析。结果表明,PSO ELM算法以较少的隐含层神经元节点获得更高的分类精度,参数优化提高了模型拟合能力,对于城市排水管道结构性状况分类、判断具有可行性和有效性。 展开更多
关键词 排水管道 结构性状况评价 极限学习机 粒子群优化
在线阅读 下载PDF
极限学习机前沿进展与趋势 被引量:125
17
作者 徐睿 梁循 +2 位作者 齐金山 李志宇 张树森 《计算机学报》 EI CSCD 北大核心 2019年第7期1640-1670,共31页
极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之... 极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之后又被众多学者扩展到多隐层前馈神经网络中.该算法的核心思想是随机选取网络的输入权值和隐层偏置,在训练过程中保持不变,仅需要优化隐层神经元个数.网络的输出权值则是通过最小化平方损失函数,来求解Moore - Penrose广义逆运算得到最小范数最小二乘解.相比于其它传统的基于梯度的前馈神经网络学习算法,ELM具有实现简单,学习速度极快和人为干预较少等显著优势,已成为当前人工智能领域最热门的研究方向之一.ELM的学习理论表明,当隐层神经元的学习参数独立于训练样本随机生成,只要前馈神经网络的激活函数是非线性分段连续的,就可以逼近任意连续目标函数或分类任务中的任何复杂决策边界.近年来,随机神经元也逐步在越来越多的深度学习中使用,而ELM可以为其提供使用的理论基础.本文首先概述了ELM的发展历程,接着详细阐述了ELM的工作原理.然后对ELM理论和应用的最新研究进展进行了归纳总结,着重讨论并分析了自ELM提出以来的主要学习算法和模型,包括提出的原因、核心思想、求解方法、各自的优缺点以及相关问题.最后,针对当前的研究现状,指出了ELM存在的争议、问题和挑战,并对未来的研究方向和发展趋势进行了展望。 展开更多
关键词 极限学习机 网络结构 正则化 核学习 深度学习 在线学习 并行计算
在线阅读 下载PDF
基于天牛群优化与改进正则化极限学习机的网络入侵检测 被引量:26
18
作者 王振东 刘尧迪 +2 位作者 杨书新 王俊岭 李大海 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期3024-3041,共18页
正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于... 正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于随机初始化参数带来的潜在缺陷,提出基于天牛群优化与改进正则化极限学习机(BSO-IRELM)的网络入侵检测算法.使用LU分解求解RELM的输出权值矩阵,进一步缩短了RELM的训练时间,同时利用BSO对RELM的权值和阈值进行联合优化.为避免BSO算法陷入局部最优,引入Tent映射反向学习、莱维飞行的群体学习与动态变异策略提升优化性能.实验结果表明,在机器学习UCI数据集上,相比于RELM、IRELM、GA-IRELM、PSO-IRELM等算法,BSO-IRELM的数据分类性能提升明显.最后,将BSO-IRELM应用于网络入侵检测数据集NSL-KDD,并与BP(Back propagation)、LR(Logistics regression)、RBF(Radial basis function)、AB(AdaBoost)、SVM(Support vector machine)、RELM、IRELM等算法进行了对比,结果证明BSO-IRELM算法在准确率、精确率、真正率和假正率等指标上均具有明显优势. 展开更多
关键词 入侵检测 正则化极限学习机 LU分解 天牛群优化算法
在线阅读 下载PDF
基于RELM的时间序列数据加权集成分类方法 被引量:11
19
作者 赵林锁 陈泽 +1 位作者 丁琳琳 宋宝燕 《计算机工程与科学》 CSCD 北大核心 2022年第3期545-553,共9页
时间序列数据通常是指一系列带有时间间隔的实值型数据,广泛存在于煤矿、金融和医疗等领域。为解决现有时间序列数据分类问题中存在的含有大量噪声、预测精度低和泛化性能差的问题,提出了一种基于正则化极限学习机(RELM)的时间序列数据... 时间序列数据通常是指一系列带有时间间隔的实值型数据,广泛存在于煤矿、金融和医疗等领域。为解决现有时间序列数据分类问题中存在的含有大量噪声、预测精度低和泛化性能差的问题,提出了一种基于正则化极限学习机(RELM)的时间序列数据加权集成分类方法。首先,针对时间序列数据中所含有的噪声,利用小波包变换方法对时间序列数据进行去噪处理。其次,针对时间序列数据分类方法预测精度低、泛化性能较差的问题,提出了一种基于RELM的加权集成分类方法。该方法通过训练正则化极限学习机(RELM)隐藏层节点数量的方法,有效选取RELM基分类器;通过粒子群优化(PSO)算法,对RELM基分类器的权值进行优化;实现对时间序列数据的加权集成分类。实验结果表明,该分类方法能够对时间序列数据进行有效分类,并提升了分类精度。 展开更多
关键词 时间序列数据 小波包 正则化极限学习机 集成分类 权值优化
在线阅读 下载PDF
基于近似结构风险的ELM隐层节点数优化 被引量:2
20
作者 黄重庆 徐哲壮 +1 位作者 黄宴委 赖大虎 《计算机工程》 CAS CSCD 2014年第9期215-219,224,共6页
隐层节点数是影响极端学习机(ELM)泛化性能的关键参数,针对传统的ELM隐层节点数确定算法中优化过程复杂、容易过学习或陷入局部最优的问题,提出结构风险最小化-极端学习机(SRM-ELM)算法。通过分析VC维与隐层节点数量之间的关联,对VC信... 隐层节点数是影响极端学习机(ELM)泛化性能的关键参数,针对传统的ELM隐层节点数确定算法中优化过程复杂、容易过学习或陷入局部最优的问题,提出结构风险最小化-极端学习机(SRM-ELM)算法。通过分析VC维与隐层节点数量之间的关联,对VC信任函数进行近似改进,使其为凹函数,并结合经验风险重构近似的SRM。在此基础上,将粒子群优化的位置值直接作为ELM的隐层节点数,利用粒子群算法最小化结构风险函数获得极端学习机的隐层节点数,作为最优节点数。使用6组UCI数据和胶囊缺陷数据进行仿真验证,结果表明,该算法能获得极端学习机的最优节点数,并具有更好的泛化能力。 展开更多
关键词 极端学习机 结构风险 VC信任 粒子群优化 隐层节点数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部