具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74...具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74 nm的吸收峰宽。这些吸收谱带来自于表面晶格模式和三个表面等离激元极化子模式。此外,这些模式的谱峰对超构材料几何外形和环境介质光学参数的变化敏感,从而在可见光-近红外范围内可以被调控。用于折射率传感时,其具有347 nm每折射率单位的灵敏度,Figure of Merit达到469。这些特性令这一材料适用于光学滤波器和折射率传感器等用途。展开更多
基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云...基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。展开更多
在相距600 m 的两地进行了静态激光大气传输实验,并对接收到的光强和光束到达角起伏进行记录.以每10min 所记录的数据作为样本,计算出光强起伏方差和到达角起伏方差,并根据理论孔径平滑因子计算出点接收时的光强起伏方差,再分别根据光...在相距600 m 的两地进行了静态激光大气传输实验,并对接收到的光强和光束到达角起伏进行记录.以每10min 所记录的数据作为样本,计算出光强起伏方差和到达角起伏方差,并根据理论孔径平滑因子计算出点接收时的光强起伏方差,再分别根据光强起伏方差和到达角起伏方差计算出大气折射率结构常数.最后,得到一天之内大气折射率结构常数的变化曲线,并分析得出大气折射率结构常数在早晨和傍晚存在极小值.展开更多
文摘具有多谱带完美吸收效应的超构材料在光学滤波和折射率传感等多种应用中是理想的材料。提出了一种由银金属上的氮化硅介电纳米空腔阵列组成的多谱带窄带完美吸收超构材料。有限元仿真给出了四个最高可达99.9%的吸收峰,以及最小达到0.74 nm的吸收峰宽。这些吸收谱带来自于表面晶格模式和三个表面等离激元极化子模式。此外,这些模式的谱峰对超构材料几何外形和环境介质光学参数的变化敏感,从而在可见光-近红外范围内可以被调控。用于折射率传感时,其具有347 nm每折射率单位的灵敏度,Figure of Merit达到469。这些特性令这一材料适用于光学滤波器和折射率传感器等用途。
文摘基于湍流散射理论,运用边界层风廓线雷达(WPR)联合RASS(Radio Acoustic Sounding System),GPS/PWV(Global Position System/Precipitable Water Vapor)进行全遥感系统的大气比湿廓线反演试验,并对影响因子进行分析。利用2011年8—9月云南大理综合探测试验数据的反演结果与探空数据进行比较分析,结果表明:WPR联合探空的温度廓线和起始边界比湿(q_0)反演大气比湿廓线,与探空大气比湿廓线相比具有相同的变化趋势,标准差为0.84 g·kg^(-1),误差随高度增加呈递增趋势;WPR联合RASS,GPS/PWV数据反演大气比湿廓线,与探空大气比湿廓线的标准差为0.85 g·kg^(-1)。参加反演的数据中,折射指数结构常数C_n^2与谱宽σ_(turb)~2对反演影响最大,反演算法中大气折射指数梯度M符号的判断对反演精度也有较大影响。
文摘在相距600 m 的两地进行了静态激光大气传输实验,并对接收到的光强和光束到达角起伏进行记录.以每10min 所记录的数据作为样本,计算出光强起伏方差和到达角起伏方差,并根据理论孔径平滑因子计算出点接收时的光强起伏方差,再分别根据光强起伏方差和到达角起伏方差计算出大气折射率结构常数.最后,得到一天之内大气折射率结构常数的变化曲线,并分析得出大气折射率结构常数在早晨和傍晚存在极小值.