The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,w...The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.展开更多
The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic...The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fego Ni10 and Fe80 Ni20 consist of a single α(bcc) phase, Fe30 Ni30 powders are a single γ(fcc), and for Fe65 Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80 Ni20 powders annealed at 680℃ exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.展开更多
Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite fo...Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.展开更多
The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the stren...The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes.展开更多
基金Project(2023JJ40759)supported by the Natural Science Foundation of Hunan Province,China。
文摘The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.
文摘The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fego Ni10 and Fe80 Ni20 consist of a single α(bcc) phase, Fe30 Ni30 powders are a single γ(fcc), and for Fe65 Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80 Ni20 powders annealed at 680℃ exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.
基金Project(2023YFC3905904)supported by the National Key Research and Development Program,ChinaProject(2220197000221)supported by the Team of Foshan National Hi-Tech Industrial Development Zone Industrialization Entrepreneurial Teams Program,ChinaProject(2024ZZTS0373)supported by the Central South University Graduate Student Autonomous Exploration Innovative Programme,China。
文摘Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.
基金Project(41072200)supported by the National Natural Science Foundation of ChinaProject(14PJD032)supported by the Shanghai Pujiang Program,China
文摘The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes.