In this paper, a series of experiments, including atomic force microscope (AFM), environmental scanning electron microscope (ESEM), and core displacement tests were conducted to investigate the effect of polymer s...In this paper, a series of experiments, including atomic force microscope (AFM), environmental scanning electron microscope (ESEM), and core displacement tests were conducted to investigate the effect of polymer solution structure on solution properties and oil displacement efficiency. The results show that in the HPAM solution polymer coils were formed and then aggregated into a loose structure, while the HAP2010 solution formed a strong network structure, which would significantly improve the solution viscosity and flow resistance so as to upgrade the capacity of piston-like oil displacement in highly permeable porous media. Meanwhile, the retention of the HAP2010 solution at pore throats were also enhanced, which could reduce water production during subsequent water flooding and enlarge the swept volume during polymer flooding. Therefore, enhancing the interaction among polymer molecules is an effective way to improve the displacement efficiency of polymer solutions in heavy oil reservoirs with high permeability.展开更多
The continuous reduction of electrolytes by Li metal leads to a poor lifespan of lithium metal batteries(LMBs). Low Coulombic efficiency(CE) and safety concern due to dendrite growth are the challenging issues for LMB...The continuous reduction of electrolytes by Li metal leads to a poor lifespan of lithium metal batteries(LMBs). Low Coulombic efficiency(CE) and safety concern due to dendrite growth are the challenging issues for LMB electrolyte design. Novel electrolytes such as highly concentrated electrolytes(HCEs) have been proposed for improving interphase stability. However, this strategy is currently limited for high cost due to the use of a large amount of lithium salts as well as their high viscosity, reduced ion mobility, and poor wettability. In this work, we propose a new type of electrolyte having a moderate concentration. The electrolyte has the advantage of HCEs as the anion is preferentially reduced to form inorganic solidelectrolyte-interphase(SEI). Such optimization has been confirmed through combined spectroscopic and electrochemical characterizations and supported with the first-principle molecular dynamics simulation. We have shown the intrinsic connections between solution structure and their electrochemical stability. The 2.0 M LiDFOB/PC electrolyte, as predicted by our characterizations and simulations, allows stable charge–discharge of LNMO|Li cells at 5C for more than 1500 cycles. The 2.0 M electrolyte generates a dense layer of SEI containing fluoro-oxoborates, Li_(3)BO_(3), LiF, Li_(2)CO_(3), and some organic species effectively passivating the lithium metal, as confirmed by electron microscopy, X-ray photoelectron spectroscopy,and solid-state nuclear magnetic resonance.展开更多
The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were ...The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.展开更多
The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann t...The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasirandom structure(SQS) method is used to model the solid solutions of PbS_xTe_(1-x), which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbS_xTe_(1-x) is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The z T values for PbS_xTe_(1-x) solid solutions are higher than that of pure Pb Te and Pb S, in which the combination of low thermal conductivity and high power factor play important roles.展开更多
The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for...The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.展开更多
Mycobacterium tuberculosis(Mtb),the pathogen of tuberculosis,has latently infected about one-third of the world's population and may lead to severe clinical symptoms and death.The WhiB4 protein,a transcription fac...Mycobacterium tuberculosis(Mtb),the pathogen of tuberculosis,has latently infected about one-third of the world's population and may lead to severe clinical symptoms and death.The WhiB4 protein,a transcription factor,plays a crucial role in the survival and pathology of Mtb.WhiB4 leads to the condensation of mycobacterial nucleoids and regulates the expression of genes involved in central metabolism,respiration,and maintaining redox homeostasis.Here,we report the solution structure of reduced apo-WhiB4 monomer,which consists of an unstructured N-terminal domain with four cysteine residues and a helix-turnhelix C-terminal domain that plays a major role in DNA binding.The C-terminal domain of WhiB4 binds DNA at the minor groove,with five positively charged lysine/arginine residues contacting DNA sugar-phosphate backbones through electrostatic interactions.AT-rich DNA sequences with narrower minor grooves are more preferred by WhiB4.The binding affinity of a single C-terminal domain of WhiB4 is weak.When oxidized,WhiB4 can form dimers and oligomers in different forms through disulfide bonds,which should significantly enhance its DNA binding ability through multivalent effect and change the local structure of target genes and influence their transcription.These structural features form the basis for WhiB4 to function as a redox-sensitive transcription factor in Mtb.展开更多
基金supported by the National Science and Technology Major Project (2011ZX05024-004)National High Technology Research and Development Program of China (863 Program: 2007AA090701-3)
文摘In this paper, a series of experiments, including atomic force microscope (AFM), environmental scanning electron microscope (ESEM), and core displacement tests were conducted to investigate the effect of polymer solution structure on solution properties and oil displacement efficiency. The results show that in the HPAM solution polymer coils were formed and then aggregated into a loose structure, while the HAP2010 solution formed a strong network structure, which would significantly improve the solution viscosity and flow resistance so as to upgrade the capacity of piston-like oil displacement in highly permeable porous media. Meanwhile, the retention of the HAP2010 solution at pore throats were also enhanced, which could reduce water production during subsequent water flooding and enlarge the swept volume during polymer flooding. Therefore, enhancing the interaction among polymer molecules is an effective way to improve the displacement efficiency of polymer solutions in heavy oil reservoirs with high permeability.
基金financial support from the National Natural Science Foundation of China (21922410)the Zhejiang Provincial Natural Science Foundation (R19B050003 and LQ21B030006)+2 种基金the Scientific Research Fund of Zhejiang Provincial Education Department (Y201839549)the Zhejiang University K.P. Chao’s High Technology Development Foundation (2018RC009)the Postdoctoral Science Foundation of Zhejiang Province (ZJ2020079)。
文摘The continuous reduction of electrolytes by Li metal leads to a poor lifespan of lithium metal batteries(LMBs). Low Coulombic efficiency(CE) and safety concern due to dendrite growth are the challenging issues for LMB electrolyte design. Novel electrolytes such as highly concentrated electrolytes(HCEs) have been proposed for improving interphase stability. However, this strategy is currently limited for high cost due to the use of a large amount of lithium salts as well as their high viscosity, reduced ion mobility, and poor wettability. In this work, we propose a new type of electrolyte having a moderate concentration. The electrolyte has the advantage of HCEs as the anion is preferentially reduced to form inorganic solidelectrolyte-interphase(SEI). Such optimization has been confirmed through combined spectroscopic and electrochemical characterizations and supported with the first-principle molecular dynamics simulation. We have shown the intrinsic connections between solution structure and their electrochemical stability. The 2.0 M LiDFOB/PC electrolyte, as predicted by our characterizations and simulations, allows stable charge–discharge of LNMO|Li cells at 5C for more than 1500 cycles. The 2.0 M electrolyte generates a dense layer of SEI containing fluoro-oxoborates, Li_(3)BO_(3), LiF, Li_(2)CO_(3), and some organic species effectively passivating the lithium metal, as confirmed by electron microscopy, X-ray photoelectron spectroscopy,and solid-state nuclear magnetic resonance.
基金supported by the National Key Basic Research Program of China(973 Program,2012CB224802)the SINOPEC project(No.114013)
文摘The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647010 and 11704020)the Higher Education and High-quality and World-class Universities(Grant No.PY201611)the Fund for Disciplines Construction from Beijing University of Chemical Technology(Grant No.XK1702)
文摘The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasirandom structure(SQS) method is used to model the solid solutions of PbS_xTe_(1-x), which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbS_xTe_(1-x) is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The z T values for PbS_xTe_(1-x) solid solutions are higher than that of pure Pb Te and Pb S, in which the combination of low thermal conductivity and high power factor play important roles.
文摘The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.
基金grant 2016YFA0501202 from the Ministry of Science and Technologygrant 31570734 from the National Natural Science Foundation of China,and grant 2018YFD0500900 from National Key R&D Program of China.
文摘Mycobacterium tuberculosis(Mtb),the pathogen of tuberculosis,has latently infected about one-third of the world's population and may lead to severe clinical symptoms and death.The WhiB4 protein,a transcription factor,plays a crucial role in the survival and pathology of Mtb.WhiB4 leads to the condensation of mycobacterial nucleoids and regulates the expression of genes involved in central metabolism,respiration,and maintaining redox homeostasis.Here,we report the solution structure of reduced apo-WhiB4 monomer,which consists of an unstructured N-terminal domain with four cysteine residues and a helix-turnhelix C-terminal domain that plays a major role in DNA binding.The C-terminal domain of WhiB4 binds DNA at the minor groove,with five positively charged lysine/arginine residues contacting DNA sugar-phosphate backbones through electrostatic interactions.AT-rich DNA sequences with narrower minor grooves are more preferred by WhiB4.The binding affinity of a single C-terminal domain of WhiB4 is weak.When oxidized,WhiB4 can form dimers and oligomers in different forms through disulfide bonds,which should significantly enhance its DNA binding ability through multivalent effect and change the local structure of target genes and influence their transcription.These structural features form the basis for WhiB4 to function as a redox-sensitive transcription factor in Mtb.