Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an...Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of ...This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.展开更多
In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile traj...In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.展开更多
Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration ...Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration and hydroxylation.So far,few crystal structures of plant P450s have been obtained.We determined the crystal structure of IFS from Medicago truncatula at 1.9 by MAD method using a selenomethionine substituted crystal and conducted molecular docking and mutagenesis study.The structure of IFS complexed with imidazole exhibits the helix Iα-loop-helix Iβmotif which corresponds to helix I of other P 450s.Compared with structures of common P450s,IFS/imidazole structure contains an extra domain,i.e.,theγ-domain.The structure reveals a homodimer in which theγ-domain of one molecule interacts with theβ-domain of another.The plane of heme group makes an angle of approximately 40°with the helix Iα-loop-helix Iβmotif.Molecular docking combined with mutagenesis study suggested that Trp-128 and Asp-300 might play important roles in substrate binding and recognition.Phe-301,Ser-303 and Gly-305 from the helix Iα-loop-helix Iβmotif may play important roles in the aryl-ring migration.These novel structural features reveal insights into the unique reaction mechanism of IFS and provide a basis for engineering IFS in leguminous crops for health purpose.展开更多
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS...Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terr...Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terranes was an active Andean\|type continental margin. In south Tibet this margin was dominated by the calc\|alkaline Ladakh—Gangdese granite batholith, associated andesitic volcanic rocks and continental red\|beds. In contrast, the southern Karakoram exposes deep crustal metamorphic rocks and crustal melt leucogranites. New U\|Pb age dating from the Hunza valley and Baltoro glacier region has revealed four spatially and temporally distinct metamorphic episodes. M1 sillimanite grade metamorphism in Hunza was a late Cretaceous event, probably caused by the accretion of the Kohistan arc to Asia. M2 was the major kyanite and sillimanite grade event during late Eocene—Oligocene crustal thickening and shortening, following India\|Asia collision. Numerous melting events resulted in the formation of crustal melt granites throughout the last 50Ma with multiple generations of dykes and very large scale crustal melting along the Baltoro monzogranite\|leucogranite ba tholith during the late Oligocene—early Miocene. M3 metamorphism was a high\| T , low\| p contact thermal metamorphism around the Baltoro granite. In Hunza, younger staurolite grade metamorphism has been dated by U\|Pb monazites at 16Ma, with the Sumayar leucogranite intruded at 9 5Ma cross\|cutting the metamorphic isograds. In the Baltoro region the youngest metamorphism, M4, is the sillimanite grade Dassu gneiss core complex dated by U\|Pb on monazites as late Miocene—Pliocene (5 4±0 25)Ma with Precambrian protolith zircon cores (1855±11)Ma. Numerous gem\|bearing pegmatite dykes cross\|cut these rocks and are thought to have been intruded within the last 2~3Ma. Structural mapping, combined with U\|Pb geochronology shows that major metamorphic events can be both long\|lasting (up to 20Ma) and very restrictive, both in time and space.展开更多
A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of comm...A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.展开更多
In order to efficiently explore and use woody biomass,six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions.The lignin structures were c...In order to efficiently explore and use woody biomass,six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions.The lignin structures were characterized by Fourier transform infrared spectroscopy(FT-IR) and 1D and 2D Nuclear Magnetic Resonance(NMR).FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given.The results of 1H and 13C NMR demonstrated that the lignin fraction L2,isolated with 70% ethanol containing 1% NaOH,was mainly composed of β-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit.Based on the 2D HSQC NMR spectrum,the ethanol organosolv lignin fraction L1,extracted with 70% ethanol,presents a predominance of β-O-4′ aryl ether linkages(61% of total side chains),and a low abundance of condensed carbon-carbon linked structures(such as ββ′,β-1′,and β-5′) and a lower S/G ratio.Furthermore,a small percentage(ca.9%) of the linkage side chain was found to be acylated at the γ-carbon.展开更多
OBJECTIVE Major depressive disorder(MDD) is a highly heterogeneous mental illness.Further classification may help characterize its heterogeneity.The purpose of this study was to examine metabolomic and brain connectom...OBJECTIVE Major depressive disorder(MDD) is a highly heterogeneous mental illness.Further classification may help characterize its heterogeneity.The purpose of this study was to examine metabolomic and brain connectomic associations with traditional Chinese medicine(TCM) diagnostic classification of MDD.METHODS Fifty unmedicated depressed patients were classified into Liver Qi Stagnation(LQS,n=30) and Heart and Spleen Deficiency(HSD,n=20) subtypes according to TCM diagnosis.Healthy volunteers(n=28) were included as controls.Gas chromatography-mass spectrometry(GC-MS) and diffusion tensor imaging were used to detect serum and urinary metabolomic profiles and whole-brain white matter connectivity,respectively.RESULTS In metabolomic analysis,28 metabolites were identified for good separations between TCM subtypes and healthy controls in serum and urine samples.While both TCM subtypes had similar profiles in proteinogenic branched-chain amino acids and energy metabolism-related metabolites that were differentiated from healthy controls,the LQS subtype additionally differed from healthy controls in multiple amino acid metabolites that are involved in the biosynthesis of monoamine and amino acid neurotransmitters.Several metabolites are differentially associated with the two subtypes.In connectomic analysis,The LQS subtype showed significant differences in multiple network metrics of the angular gyrus,middle occipital gyrus,calcarine sulcus,and Heschl′ s gyrus when compared to the other two groups.The HSD subtype had markedly greater regional connectivity of the insula,parahippocampal gyrus,and posterior cingulate gyrus than the other two groups,and microstructural abnormalities of the frontal medial orbital gyrus and middle temporal pole.The insular betweenness centrality was strongly inversely correlated with the severity of depression and dichotomized the two subtypes at the optimal cutoff value with acceptable sensitivity and specificity.CONCLUSION The LQS subtype may represent an MDD subpopulation mainly characterized by abnormalities in the biosynthesis of monoamine and amino acid neurotransmitters,closer associations with stress-related pathophysiology,and aberrant connectivity of the audiovisual perception-related temporal-occipital network,whereas the HSD subtype is more closely associated with hyperconnectivity and microstructural abnormalities of the limbicparalimbic network.Certain metabolomic and connectomic variables are potential biomarkers for TCM diagnostic subtypes which is perhaps an alternative classification for depressive disorders.展开更多
Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into accoun...Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2...A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.展开更多
The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression...The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.展开更多
RDX is a nitramine type explosive which is widely employed in military and industrial applications. A hot topic in military area is lowering the sensitivity of explosives. Along this direction, one approach, which is ...RDX is a nitramine type explosive which is widely employed in military and industrial applications. A hot topic in military area is lowering the sensitivity of explosives. Along this direction, one approach, which is still being applied, is to use coatings or additives for explosives, as in the example of i-RDX(reduced sensitivity RDX). Another attitude would be to make some slight molecular level chemical modifications in the explosive structure that cause a diminished sensitivity without substantial loss in explosive impact. RDX has three nitro groups. We assumed that by the conversion of these nitro groups to nitroso and amino groups, it might be possible to lower the sensitivity somewhat. We have correlated the bond dissociation energies with impact sensitivity. Additionally, the ballistic properties, i.e. detonation velocity(D), and detonation pressure(P) have been examined by using Kamlet-Jacobs equations. We have shown that the above mentioned molecular modifications are a successful way of lowering the sensitivity of RDX.展开更多
Industrial and academic interest in how to effectively manage technology resources is increasing as it becomes more and more important.Effective managing of technology resources depends on technology management system...Industrial and academic interest in how to effectively manage technology resources is increasing as it becomes more and more important.Effective managing of technology resources depends on technology management system,and thus understanding how such system evolves becomes an ongoing research topic.Based on the self-organization theory,this paper constructs an evolution model of technology management system.The simulation results show that the evolution of each of the technology management subsystem is affected by the knowledge growth rate of its own,and it is also affected by the coupling and synergy relationship with other subsystems.Moreover,the coupling and synergy relationship can make the speed of evolution higher than the knowledge growth rate of the subsystem itself.展开更多
There are two mechanisms of the coarse surface asperity resistance effect and rubbing resistance effect in the course of the soft rock structural surface creep,of which the former plays a dominant role in hindering th...There are two mechanisms of the coarse surface asperity resistance effect and rubbing resistance effect in the course of the soft rock structural surface creep,of which the former plays a dominant role in hindering the deformation in the starting creep phase,so that the structural surface creep usually displays the strong surface roughness effect,and so does the latter when the asperities in the coarse surface were fractured by shearing.Under the low stress condition,there are only two phases of the decelerating creep and the constant creep for the soft rock structural surface,and as the stress increases and overcomes the rubbing resistance,the accelerating creep failure of the structural surface will happen suddenly.Therefore,a multiple rheological model,which combines the nonlinear NEWTON body(NN) of a certain mass and the empirical plastic body(EM) with the classical SAINT VENANT body,NEWTON body,KELVIN body and HOOKE body,could be used to comprehensively describe the creep characteristics of the soft rock structural surface.Its mechanical parameter values will vary owing to the different surface roughness of the structural surface.The parameters of GH,GK and ηL are positively linearly correlative to the surface roughness.The surface roughness and m are negative exponential function correlation.The long-term strength τS is positively correlative to the surface roughness.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly a...The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.展开更多
文摘Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
文摘This study aimed to investigate the effect of ultrasound-assisted alkaline extraction(UAE)(at 20 kHz and different powers of 0,200,300,400,500 and 600 W for 10 min)on the yield,structure and emulsifying properties of chickpea protein isolate(CPI).Compared with the non-ultrasound group,ultrasound treatment at 400 W resulted in the largest increase in CPI yield,and both the particle size and turbidity decreased with increasing ultrasound power from 0 to 400 W.The scanning electron microscope results showed a uniform structural distribution of CPI.Moreover,itsα-helix content increased,β-sheet content decreased,and total sulfhydryl group content and endogenous fluorescence intensity rose,illustrating that UAE changed the secondary and tertiary structure of CPI.At 400 W,the solubility of the emulsion increased to 63.18%,and the best emulsifying properties were obtained;the emulsifying activity index(EAI)and emulsifying stability index(ESI)increased by 85.42%and 46.78%,respectively.Furthermore,the emulsion droplets formed were smaller and more uniform.In conclusion,proper UAE power conditions increased the extraction yield and protein content of CPI,and effectively improved its structure and emulsifying characteristics.
文摘In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.
文摘Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration and hydroxylation.So far,few crystal structures of plant P450s have been obtained.We determined the crystal structure of IFS from Medicago truncatula at 1.9 by MAD method using a selenomethionine substituted crystal and conducted molecular docking and mutagenesis study.The structure of IFS complexed with imidazole exhibits the helix Iα-loop-helix Iβmotif which corresponds to helix I of other P 450s.Compared with structures of common P450s,IFS/imidazole structure contains an extra domain,i.e.,theγ-domain.The structure reveals a homodimer in which theγ-domain of one molecule interacts with theβ-domain of another.The plane of heme group makes an angle of approximately 40°with the helix Iα-loop-helix Iβmotif.Molecular docking combined with mutagenesis study suggested that Trp-128 and Asp-300 might play important roles in substrate binding and recognition.Phe-301,Ser-303 and Gly-305 from the helix Iα-loop-helix Iβmotif may play important roles in the aryl-ring migration.These novel structural features reveal insights into the unique reaction mechanism of IFS and provide a basis for engineering IFS in leguminous crops for health purpose.
文摘Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
文摘Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terranes was an active Andean\|type continental margin. In south Tibet this margin was dominated by the calc\|alkaline Ladakh—Gangdese granite batholith, associated andesitic volcanic rocks and continental red\|beds. In contrast, the southern Karakoram exposes deep crustal metamorphic rocks and crustal melt leucogranites. New U\|Pb age dating from the Hunza valley and Baltoro glacier region has revealed four spatially and temporally distinct metamorphic episodes. M1 sillimanite grade metamorphism in Hunza was a late Cretaceous event, probably caused by the accretion of the Kohistan arc to Asia. M2 was the major kyanite and sillimanite grade event during late Eocene—Oligocene crustal thickening and shortening, following India\|Asia collision. Numerous melting events resulted in the formation of crustal melt granites throughout the last 50Ma with multiple generations of dykes and very large scale crustal melting along the Baltoro monzogranite\|leucogranite ba tholith during the late Oligocene—early Miocene. M3 metamorphism was a high\| T , low\| p contact thermal metamorphism around the Baltoro granite. In Hunza, younger staurolite grade metamorphism has been dated by U\|Pb monazites at 16Ma, with the Sumayar leucogranite intruded at 9 5Ma cross\|cutting the metamorphic isograds. In the Baltoro region the youngest metamorphism, M4, is the sillimanite grade Dassu gneiss core complex dated by U\|Pb on monazites as late Miocene—Pliocene (5 4±0 25)Ma with Precambrian protolith zircon cores (1855±11)Ma. Numerous gem\|bearing pegmatite dykes cross\|cut these rocks and are thought to have been intruded within the last 2~3Ma. Structural mapping, combined with U\|Pb geochronology shows that major metamorphic events can be both long\|lasting (up to 20Ma) and very restrictive, both in time and space.
基金Project(20141996018)supported by Aerospace Science Foundation of ChinaProject(2012JZ8005)supported by the Natural Science Fundamental Research Planned Project of Shanxi Province,China
文摘A method of system structural analysis based on decision making trial and evaluation laboratory together with interpretative structural modeling(DEMATEL-ISM) and entropy is proposed to clarify system structure of communication networks and analyze mutual influencing degree between different networks.Mutual influencing degree and importance degree of elements are both considered to determine weights of elements,and the entropy of expert judgment results is used to omit unimportant influence relation and simplify system structure.Structural analysis on communication networks system shows that the proposed method can quantificationally present weights and mutual influencing degree of elements,and reasonably simplify system structure.The results indicate the rationality and feasibility of the method.
基金Major State Basic Research Projects of China(973-2010CB732204)Specific Programs in Graduate Science and Technology Innovation of Beijing Forestry University(BLYJ201110)
文摘In order to efficiently explore and use woody biomass,six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions.The lignin structures were characterized by Fourier transform infrared spectroscopy(FT-IR) and 1D and 2D Nuclear Magnetic Resonance(NMR).FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given.The results of 1H and 13C NMR demonstrated that the lignin fraction L2,isolated with 70% ethanol containing 1% NaOH,was mainly composed of β-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit.Based on the 2D HSQC NMR spectrum,the ethanol organosolv lignin fraction L1,extracted with 70% ethanol,presents a predominance of β-O-4′ aryl ether linkages(61% of total side chains),and a low abundance of condensed carbon-carbon linked structures(such as ββ′,β-1′,and β-5′) and a lower S/G ratio.Furthermore,a small percentage(ca.9%) of the linkage side chain was found to be acylated at the γ-carbon.
基金National Natural Science Foundation of China(81403502)General Research Fund ofResearch Grants Council of Hong Kong (17124418).
文摘OBJECTIVE Major depressive disorder(MDD) is a highly heterogeneous mental illness.Further classification may help characterize its heterogeneity.The purpose of this study was to examine metabolomic and brain connectomic associations with traditional Chinese medicine(TCM) diagnostic classification of MDD.METHODS Fifty unmedicated depressed patients were classified into Liver Qi Stagnation(LQS,n=30) and Heart and Spleen Deficiency(HSD,n=20) subtypes according to TCM diagnosis.Healthy volunteers(n=28) were included as controls.Gas chromatography-mass spectrometry(GC-MS) and diffusion tensor imaging were used to detect serum and urinary metabolomic profiles and whole-brain white matter connectivity,respectively.RESULTS In metabolomic analysis,28 metabolites were identified for good separations between TCM subtypes and healthy controls in serum and urine samples.While both TCM subtypes had similar profiles in proteinogenic branched-chain amino acids and energy metabolism-related metabolites that were differentiated from healthy controls,the LQS subtype additionally differed from healthy controls in multiple amino acid metabolites that are involved in the biosynthesis of monoamine and amino acid neurotransmitters.Several metabolites are differentially associated with the two subtypes.In connectomic analysis,The LQS subtype showed significant differences in multiple network metrics of the angular gyrus,middle occipital gyrus,calcarine sulcus,and Heschl′ s gyrus when compared to the other two groups.The HSD subtype had markedly greater regional connectivity of the insula,parahippocampal gyrus,and posterior cingulate gyrus than the other two groups,and microstructural abnormalities of the frontal medial orbital gyrus and middle temporal pole.The insular betweenness centrality was strongly inversely correlated with the severity of depression and dichotomized the two subtypes at the optimal cutoff value with acceptable sensitivity and specificity.CONCLUSION The LQS subtype may represent an MDD subpopulation mainly characterized by abnormalities in the biosynthesis of monoamine and amino acid neurotransmitters,closer associations with stress-related pathophysiology,and aberrant connectivity of the audiovisual perception-related temporal-occipital network,whereas the HSD subtype is more closely associated with hyperconnectivity and microstructural abnormalities of the limbicparalimbic network.Certain metabolomic and connectomic variables are potential biomarkers for TCM diagnostic subtypes which is perhaps an alternative classification for depressive disorders.
基金supported by the Postdoctoral Science Foundation of China(20080431380)
文摘Although opportunistic maintenance strategies are widely used for multi-component systems, all opportunistic mainte- nance strategies only consider economic dependence and do not take structural dependence into account. An opportunistic main- tenance strategy is presented for a multi-component system that considers both structural dependence and economic dependence. The cost relation and time relation among components based on structural dependence are developed. The maintenance strategy for each component of a multi-component system involves one of five maintenance actions, namely, no-maintenance, a minimal maintenance action, an imperfect maintenance action, a perfect maintenance action, and a replacement action. The maintenance action is determined by the virtual age of the component, the life expectancy of the component, and the age threshold values. Monte Carlo simulation is designed to obtain the optimal oppor- tunistic maintenance strategy of the system over its lifetime. The simulation result reveals that the minimum maintenance cost with a strategy that considers structural dependence is less than that with a strategy that does not consider structural dependence. The availability with a strategy that considers structural dependence is greater than that with a strategy that does not consider structural dependence under the same conditions.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金Project(2012GK2025)supported by Science-Technology Plan Foundation of Hunan Province,ChinaProject(2013zzts039)supported by the Fundamental Research Funds for Central South University,China
文摘A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by National Outstanding Doctoral Dissertations Special Funds of China
文摘The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.
文摘RDX is a nitramine type explosive which is widely employed in military and industrial applications. A hot topic in military area is lowering the sensitivity of explosives. Along this direction, one approach, which is still being applied, is to use coatings or additives for explosives, as in the example of i-RDX(reduced sensitivity RDX). Another attitude would be to make some slight molecular level chemical modifications in the explosive structure that cause a diminished sensitivity without substantial loss in explosive impact. RDX has three nitro groups. We assumed that by the conversion of these nitro groups to nitroso and amino groups, it might be possible to lower the sensitivity somewhat. We have correlated the bond dissociation energies with impact sensitivity. Additionally, the ballistic properties, i.e. detonation velocity(D), and detonation pressure(P) have been examined by using Kamlet-Jacobs equations. We have shown that the above mentioned molecular modifications are a successful way of lowering the sensitivity of RDX.
基金supported by the National Natural Science Foundation of China(72072047)the Humanities and Social Sciences Project of Ministry of Education(20YJC630090)+1 种基金Heilongjiang Philosophy and Social Science Research Project(19GLB087)the Science and Technology Program of Hebei Province(20557688D)。
文摘Industrial and academic interest in how to effectively manage technology resources is increasing as it becomes more and more important.Effective managing of technology resources depends on technology management system,and thus understanding how such system evolves becomes an ongoing research topic.Based on the self-organization theory,this paper constructs an evolution model of technology management system.The simulation results show that the evolution of each of the technology management subsystem is affected by the knowledge growth rate of its own,and it is also affected by the coupling and synergy relationship with other subsystems.Moreover,the coupling and synergy relationship can make the speed of evolution higher than the knowledge growth rate of the subsystem itself.
基金Projects(50774093,50490274) supported by the National Natural Science Foundation of China
文摘There are two mechanisms of the coarse surface asperity resistance effect and rubbing resistance effect in the course of the soft rock structural surface creep,of which the former plays a dominant role in hindering the deformation in the starting creep phase,so that the structural surface creep usually displays the strong surface roughness effect,and so does the latter when the asperities in the coarse surface were fractured by shearing.Under the low stress condition,there are only two phases of the decelerating creep and the constant creep for the soft rock structural surface,and as the stress increases and overcomes the rubbing resistance,the accelerating creep failure of the structural surface will happen suddenly.Therefore,a multiple rheological model,which combines the nonlinear NEWTON body(NN) of a certain mass and the empirical plastic body(EM) with the classical SAINT VENANT body,NEWTON body,KELVIN body and HOOKE body,could be used to comprehensively describe the creep characteristics of the soft rock structural surface.Its mechanical parameter values will vary owing to the different surface roughness of the structural surface.The parameters of GH,GK and ηL are positively linearly correlative to the surface roughness.The surface roughness and m are negative exponential function correlation.The long-term strength τS is positively correlative to the surface roughness.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
基金Project(51975591)supported by the National Natural Science Foundation of ChinaProject(P2018J003)supported by the Technology Research and Development Program of China Railway。
文摘The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.