Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo...Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.展开更多
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi...Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.展开更多
基金supported by the National Natural Science Foundation of China(61471391)the China Postdoctoral Science Foundation(2013M542541)
文摘Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.
文摘Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.