Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh...Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.展开更多
Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was es...Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.展开更多
To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural ...To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.展开更多
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea...Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.展开更多
The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent...The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.展开更多
Social infrastructures such as dams are likely to be exposed to high risk of terrorist and military attacks,leading to increasing attentions on their vulnerability and catastrophic consequences under such events.This ...Social infrastructures such as dams are likely to be exposed to high risk of terrorist and military attacks,leading to increasing attentions on their vulnerability and catastrophic consequences under such events.This paper tries to develop advanced deep learning approaches for structural dynamic response prediction and dam health diagnosis.At first,the improved long short-term memory(LSTM)networks are proposed for data-driven structural dynamic response analysis with the data generated by a single degree of freedom(SDOF)and the finite numerical simulation,due to the unavailability of abundant practical structural response data of concrete gravity dam under blast events.Three kinds of LSTM-based models are discussed with the various cases of noise-contaminated signals,and the results prove that LSTM-based models have the potential for quick structural response estimation under blast loads.Furthermore,the damage indicators(i.e.,peak vibration velocity and domain frequency)are extracted from the predicted velocity histories,and their relationship with the dam damage status from the numerical simulation is established.This study provides a deep-learning based structural health monitoring(SHM)framework for quick assessment of dam experienced underwater explosions through blastinduced monitoring data.展开更多
在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequ...在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequence,Seq2Seq)架构的基础上,将响应重构问题建模为序列生成问题,利用数据间潜在的时空关系显著提高模型的重构性能。此外,提出了一种基于均值平滑的损失计算方法评估模型的整体性能。通过对八自由度振动系统数值算例以及道林厅人行桥实际监测数据的研究,验证了所提出模型的鲁棒性与准确性。试验结果表明,该模型在不同噪声环境下均能胜任响应重构任务,在低信噪比的情况下仍表现出优异的重构性能。展开更多
基金National Science Foundation of Zhejiang under Contract(LY23E010001)。
文摘Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Railway of ChinaProject(2006FJ4233) supported by Hunan Postdoctoral Scientific Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University,China
文摘Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Rail way of Chinaproject(2005) supported by the Postdoctoral Foundation of Central South University
文摘To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.
文摘Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.
基金supported by the Key Program of the National Science Foundation of China(50830201)Aviation Research Foundation(20060952)+1 种基金the National High Technology Research and Development of China(2007AA03Z117)the Natural Science Foundation of Jiansu Province(08kjd560009)
文摘The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.52109163 and 51979188).
文摘Social infrastructures such as dams are likely to be exposed to high risk of terrorist and military attacks,leading to increasing attentions on their vulnerability and catastrophic consequences under such events.This paper tries to develop advanced deep learning approaches for structural dynamic response prediction and dam health diagnosis.At first,the improved long short-term memory(LSTM)networks are proposed for data-driven structural dynamic response analysis with the data generated by a single degree of freedom(SDOF)and the finite numerical simulation,due to the unavailability of abundant practical structural response data of concrete gravity dam under blast events.Three kinds of LSTM-based models are discussed with the various cases of noise-contaminated signals,and the results prove that LSTM-based models have the potential for quick structural response estimation under blast loads.Furthermore,the damage indicators(i.e.,peak vibration velocity and domain frequency)are extracted from the predicted velocity histories,and their relationship with the dam damage status from the numerical simulation is established.This study provides a deep-learning based structural health monitoring(SHM)framework for quick assessment of dam experienced underwater explosions through blastinduced monitoring data.
文摘在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequence,Seq2Seq)架构的基础上,将响应重构问题建模为序列生成问题,利用数据间潜在的时空关系显著提高模型的重构性能。此外,提出了一种基于均值平滑的损失计算方法评估模型的整体性能。通过对八自由度振动系统数值算例以及道林厅人行桥实际监测数据的研究,验证了所提出模型的鲁棒性与准确性。试验结果表明,该模型在不同噪声环境下均能胜任响应重构任务,在低信噪比的情况下仍表现出优异的重构性能。