期刊文献+
共找到334篇文章
< 1 2 17 >
每页显示 20 50 100
Controller design for stochastic nonlinear systems with matched conditions 被引量:1
1
作者 LI Guifang Ye-Hwa CHEN 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期160-165,共6页
This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic... This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method. 展开更多
关键词 stochastic nonlinear systems UNCERTAINTY matched conditions global boundedness in probability
在线阅读 下载PDF
Fuzzy Adaptive Control of Stochastic Nonlinear Systems with Unknown Virtual Control Gain Function 被引量:11
2
作者 WANG Ying-Chun ZHANG Hua-Guang WANG Yi-Zhong 《自动化学报》 EI CSCD 北大核心 2006年第2期170-178,共9页
The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is... The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation. 展开更多
关键词 随机非线性系统 模糊自适应控制 虚拟控制 增益函数
在线阅读 下载PDF
Adaptive State-feedback Stabilization for More General High-order Stochastic Nonlinear Systems 被引量:6
3
作者 TIAN Jie XIE Xue-Jun 《自动化学报》 EI CSCD 北大核心 2008年第9期1188-1191,共4页
适应州反馈的稳定为在的高顺序的随机的非线性的系统的一个类被调查函数 fi 的上面的界限(?? 铄吗??
关键词 非线性系统 自动化系统 反馈系统 稳定性
在线阅读 下载PDF
Output-feedback Stabilization for Stochastic High-order Nonlinear Systems with a Ratio of Odd Integers Power 被引量:4
4
作者 LIU Liang DUAN Na XIE Xue-Jun 《自动化学报》 EI CSCD 北大核心 2010年第6期858-864,共7页
关键词 反馈系统 稳定性 自动化 研究
在线阅读 下载PDF
Output-feedback adaptive stochastic nonlinear stabilization using neural networks
5
作者 Weisheng Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期81-87,共7页
For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assum... For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme. 展开更多
关键词 neural network OUTPUT-FEEDBACK nonlinear stochastic systems backstepping.
在线阅读 下载PDF
Adaptive neural control for a class of uncertain stochastic nonlinear systems with dead-zone
6
作者 Zhaoxu Yu Hongbin Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期500-506,共7页
The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neur... The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results. 展开更多
关键词 adaptive control neural network(NN) BACKSTEPPING stochastic nonlinear system.
在线阅读 下载PDF
Bayesian estimation for nonlinear stochastic hybrid systems with state dependent transitions
7
作者 Shunyi Zhao Fei Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期242-249,共8页
The Bayesian approach is considered as the most general formulation of the state estimation for dynamic systems. However, most of the existing Bayesian estimators of stochastic hybrid systems only focus on the Markov ... The Bayesian approach is considered as the most general formulation of the state estimation for dynamic systems. However, most of the existing Bayesian estimators of stochastic hybrid systems only focus on the Markov jump system, few liter- ature is related to the estimation problem of nonlinear stochastic hybrid systems with state dependent transitions. According to this problem, a new methodology which relaxes quite a restrictive as- sumption that the mode transition process must satisfy Markov properties is proposed. In this method, a general approach is presented to model the state dependent transitions, the state and output spaces are discreted into cell space which handles the nonlinearities and computationally intensive problem offline. Then maximum a posterior estimation is obtained by using the Bayesian theory. The efficacy of the estimator is illustrated by a simulated example . 展开更多
关键词 Bayesian estimation nonlinear stochastic hybrid sys- tem state dependent transition cell space.
在线阅读 下载PDF
Optimal and suboptimal white noise smoothers for nonlinear stochastic systems
8
作者 王小旭 潘泉 +1 位作者 梁彦 程咏梅 《Journal of Central South University》 SCIE EI CAS 2013年第3期655-662,共8页
A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optima... A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization. 展开更多
关键词 nonlinear stochastic system white noise smoother optimal framework unscented transformation
在线阅读 下载PDF
Fault tolerant control based on stochastic distribution via RBF neural networks 被引量:9
9
作者 Zakwan Skaf Hong Wang Lei Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期63-69,共7页
A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measure... A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained. 展开更多
关键词 probability density function(PDF) nonlinear stochastic system fault tolerant control(FTC).
在线阅读 下载PDF
Adaptive NN stabilization for stochastic systems with discrete and distributed time-varying delays
10
作者 Jing Li Junmin Li Yuli Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期954-966,共13页
A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and ... A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and unknown nonlinear functions in both drift and diffusion terms.First,an extensional stability notion and the related criterion are introduced.Then,a nonlinear observer to estimate the unmeasurable states is designed,and a systematic backstepping procedure to design an adaptive NN output-feedback controller is proposed such that the closed-loop system is stable in probability.The effectiveness of the proposed control scheme is demonstrated via a numerical example. 展开更多
关键词 distributed delay output-feedback stabilization nonlinear observer stochastic nonlinear strict-feedback system adaptive neural network control(ANNC).
在线阅读 下载PDF
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:1
11
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布熵 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
离散时间观测的非线性随机时滞系统间歇控制
12
作者 杜鹏 宋公飞 谢佳杰 《工程数学学报》 北大核心 2025年第4期673-682,共10页
研究了基于离散时间观测的非线性随机时滞系统非周期间歇控制问题。将离散反馈控制策略和间歇性控制策略结合,设计了一个离散时间观测系统状态的非周期间歇反馈控制器,使得受控系统达到均方指数稳定。通过M矩阵理论和间歇性控制策略建... 研究了基于离散时间观测的非线性随机时滞系统非周期间歇控制问题。将离散反馈控制策略和间歇性控制策略结合,设计了一个离散时间观测系统状态的非周期间歇反馈控制器,使得受控系统达到均方指数稳定。通过M矩阵理论和间歇性控制策略建立了系统稳定的条件,再由Lyapunov函数和伊藤公式证明了非线性随机时滞系统均方指数稳定。最后,给出一个数值例子来说明理论推导的正确性,并给出数值仿真图。 展开更多
关键词 非线性 随机时滞系统 间歇控制 离散时间观测 均方指数稳定
在线阅读 下载PDF
带大量凸约束的随机优化问题的随机增广拉格朗日算法
13
作者 赵文深 韩丛英 金玲子 《中国科学院大学学报(中英文)》 北大核心 2025年第1期26-42,共17页
随机梯度法广泛应用于机器学习并取得显著成功,但许多随机方法主要针对无约束或简单约束的优化问题。对于带有正则项和大量凸约束的非凸随机优化问题,经典增广拉格朗日法是一种解法,但精确梯度信息的要求使其难以有效应对大量约束问题... 随机梯度法广泛应用于机器学习并取得显著成功,但许多随机方法主要针对无约束或简单约束的优化问题。对于带有正则项和大量凸约束的非凸随机优化问题,经典增广拉格朗日法是一种解法,但精确梯度信息的要求使其难以有效应对大量约束问题。为此,提出一种随机增广拉格朗日算法,该算法用随机一阶信息代替增广拉格朗日法的精确梯度,每步迭代仅使用一组抽样梯度和部分的约束梯度。对该算法,证明其可以在■(∈^(-8))次方后找到-KKT近似点。在多分类Neyman-Pearson问题上进行数值实验,实验结果验证了算法的有效性。 展开更多
关键词 随机梯度法 增广拉格朗日法 非线性优化 约束优化
在线阅读 下载PDF
随机Kuramoto-Sivashinsky方程行波解的非线性稳定
14
作者 刘羽 陈光淦 李树勇 《数学物理学报(A辑)》 北大核心 2025年第3期790-806,共17页
文章主要研究了随机Kuramoto-Sivashinsky方程的行波解的非线性稳定性.利用随机相位变换法和分裂时间变量,验证了当随机系统的噪声强度足够小并且其初始值足够接近所对应确定系统的行波时,该随机系统所对应的确定系统的行波解保持非线... 文章主要研究了随机Kuramoto-Sivashinsky方程的行波解的非线性稳定性.利用随机相位变换法和分裂时间变量,验证了当随机系统的噪声强度足够小并且其初始值足够接近所对应确定系统的行波时,该随机系统所对应的确定系统的行波解保持非线性稳定性. 展开更多
关键词 随机Kuramoto-Sivashinsky方程 行波 相移 非线性稳定
在线阅读 下载PDF
多策略改进角蜥蜴优化算法的避障路径规划
15
作者 原慧琳 王霄 +1 位作者 白嘉鑫 高用昊 《组合机床与自动化加工技术》 北大核心 2025年第7期10-14,19,共6页
为解决角蜥蜴算法(HLOA)在处理路径规划易陷入局部最优、收敛较慢、精度较差等问题,提出一种融合多种优化策略的改进角蜥蜴优化算法(IHLOA)。首先,利用精英反向区域学习策略增加种群反向搜索范围,提高反向搜索能力;其次,融合非线性收敛... 为解决角蜥蜴算法(HLOA)在处理路径规划易陷入局部最优、收敛较慢、精度较差等问题,提出一种融合多种优化策略的改进角蜥蜴优化算法(IHLOA)。首先,利用精英反向区域学习策略增加种群反向搜索范围,提高反向搜索能力;其次,融合非线性收敛因子与双路径逃逸策略加快算法收敛速度;最后,加入种群分层策略并融合随机分形优化搜索机制提升算法搜索精度。仿真实验表明:通过对6个基准函数的验证,改进角蜥蜴算法拥有更快的收敛速度及更精确的搜索能力。通过二维栅格地图建立避障仿真实验,改进角蜥蜴算法较原算法的寻求最优路径长度、平均路径长度更短,具有高效、稳定的搜索能力。 展开更多
关键词 精英反向区域学习 非线性收敛因子 双路径逃逸 随机分形搜索 路径规划
在线阅读 下载PDF
Exponential passive filtering for a class of nonlinear jump systems 被引量:3
16
作者 He Shuping Liu Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期829-837,共9页
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti... The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach. 展开更多
关键词 nonlinear Markov jump systems UNCERTAINTIES TIME-DELAYS passive filter exponentially stochastically stable linear matrix inequalities.
在线阅读 下载PDF
非平稳随机激励下高维非线性系统可靠度分析的概率密度全局演化方法 被引量:3
17
作者 律梦泽 陈建兵 《振动工程学报》 EI CSCD 北大核心 2024年第6期903-914,共12页
实际工程结构遭受的灾害性动力作用(如强风、地震等)往往具有显著的随机性和非平稳性。对复杂随机激励下高维非线性系统的动力可靠度进行精细化分析,对于实际工程结构的抗灾设计和优化具有重要意义。基于一般连续随机过程的降维概率密... 实际工程结构遭受的灾害性动力作用(如强风、地震等)往往具有显著的随机性和非平稳性。对复杂随机激励下高维非线性系统的动力可靠度进行精细化分析,对于实际工程结构的抗灾设计和优化具有重要意义。基于一般连续随机过程的降维概率密度演化方程,给出了一类非平稳随机激励下的高维非线性系统动力可靠度分析方法。具体地,若仅针对系统某一感兴趣物理量在给定安全域下的首次超越问题,则可以构造该物理量在安全域内的吸收边界过程,并建立其瞬时概率密度函数满足的二维偏微分方程,即降维概率密度演化方程。方程中的本征漂移系数是驱动概率密度演化的全局性物理驱动力,可以通过对原系统有限次代表性确定性动力分析获取的数据进行数值构造。采用数值方法求解降维概率密度演化方程,即可获得系统的动力可靠度解答。文中通过两个算例验证了该方法的有效性,并讨论了需要进一步研究的问题。 展开更多
关键词 降维概率密度演化方程 高维非线性随机动力系统 非平稳随机激励 动力可靠度分析 物理驱动
在线阅读 下载PDF
不确定性环境下维纳模型的随机变分贝叶斯学习 被引量:1
18
作者 刘切 李俊豪 +2 位作者 王浩 曾建学 柴毅 《自动化学报》 EI CAS CSCD 北大核心 2024年第6期1185-1198,共14页
多重不确定性环境下的非线性系统辨识是一个开放问题.贝叶斯学习在描述、处理不确定性方面具有显著优势,已在线性系统辨识方面得到广泛应用,但在非线性系统辨识的应用较少,且面临概率估计复杂、计算量大等难题.针对上述问题,以典型维纳(... 多重不确定性环境下的非线性系统辨识是一个开放问题.贝叶斯学习在描述、处理不确定性方面具有显著优势,已在线性系统辨识方面得到广泛应用,但在非线性系统辨识的应用较少,且面临概率估计复杂、计算量大等难题.针对上述问题,以典型维纳(Wiener)非线性过程为对象,提出基于随机变分贝叶斯的非线性系统辨识方法.首先对过程噪声、测量噪声以及参数不确定性进行概率描述;然后利用随机变分贝叶斯方法对模型参数进行后验估计.在估计过程中,利用随机优化思想,仅利用部分中间变量概率信息估计模型参数分布的自然梯度期望,与利用所有中间变量概率信息估计模型参数比较,显著降低了计算复杂性.该方法是首次在系统辨识领域中的应用.最后,利用一个仿真实例和一个维纳模型的Benchmark问题,证明了该方法在对大规模数据下非线性系统辨识的有效性. 展开更多
关键词 非线性系统辨识 随机优化 变分贝叶斯 维纳模型
在线阅读 下载PDF
自构建关联噪声下的随机共振及其在故障诊断上的应用 被引量:3
19
作者 徐海涛 杨涛 周生喜 《振动与冲击》 EI CSCD 北大核心 2024年第11期297-305,共9页
轴承作为旋转机械的重要组件之一,及时对其进行健康监测与更换可有效避免设备停机,减少经济损失。首先基于自构建关联噪声驱动下的随机共振系统(stochastic resonance system driven by self-constructingly correlated noise, DSCSR),... 轴承作为旋转机械的重要组件之一,及时对其进行健康监测与更换可有效避免设备停机,减少经济损失。首先基于自构建关联噪声驱动下的随机共振系统(stochastic resonance system driven by self-constructingly correlated noise, DSCSR),推导了在正弦激励下该系统输出的理论信噪比(signal-to-noise ratio, SNR)。研究发现通过调节此非线性系统的参数可观察到随机共振现象。其次,针对将随机共振现象用于故障诊断时需要准确的先验知识这一局限性,进一步提出了基于功率谱的信噪比评价指标,并以此来确定非线性系统随机共振发生时的最优系统参数,对最优参数系统输出信号进行功率谱分析来判断故障类型。最后,通过轴承故障诊断试验以及实际风机轴承内圈故障实例证明了DSCSR方法的有效性,以及其增强微弱故障特征并抑制其他谐波以及噪声的干扰的能力。 展开更多
关键词 关联噪声 随机共振 故障诊断 非线性系统
在线阅读 下载PDF
基于随机共振的水下目标微弱回波信号增强检测
20
作者 刘振 孙纯 +2 位作者 周胜增 杜选民 孙德龙 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期2014-2024,共11页
针对低信噪比下主动声呐探测水下目标的微弱回波信号检测难题,本文提出了一种基于随机共振的微弱回波信号增强检测方法。该方法通过建立频移变尺度随机共振系统,与输入高频微弱回波信号、随机噪声相匹配,实现微弱回波信号的共振增强;进... 针对低信噪比下主动声呐探测水下目标的微弱回波信号检测难题,本文提出了一种基于随机共振的微弱回波信号增强检测方法。该方法通过建立频移变尺度随机共振系统,与输入高频微弱回波信号、随机噪声相匹配,实现微弱回波信号的共振增强;进而利用乘积谱与谱峭度构建目标回波亮点增强检测指标,有效提升微弱回波亮点的能量集中程度,抑制杂波及虚假成分干扰。仿真结果表明:在低信噪比下,随机共振系统输出信噪比增益可达5 dB以上,微弱目标回波亮点检测结果更加直观便捷,杂波干扰得到大幅抑制。海试数据处理结果进一步验证了所提方法的有效性和可靠性。 展开更多
关键词 主动声呐 微弱信号检测 随机共振 水下目标探测 杂波抑制 非线性双稳态系统 多普勒频移 低信噪比
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部