This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic...This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.展开更多
The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is...The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.展开更多
For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assum...For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.展开更多
The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neur...The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results.展开更多
The Bayesian approach is considered as the most general formulation of the state estimation for dynamic systems. However, most of the existing Bayesian estimators of stochastic hybrid systems only focus on the Markov ...The Bayesian approach is considered as the most general formulation of the state estimation for dynamic systems. However, most of the existing Bayesian estimators of stochastic hybrid systems only focus on the Markov jump system, few liter- ature is related to the estimation problem of nonlinear stochastic hybrid systems with state dependent transitions. According to this problem, a new methodology which relaxes quite a restrictive as- sumption that the mode transition process must satisfy Markov properties is proposed. In this method, a general approach is presented to model the state dependent transitions, the state and output spaces are discreted into cell space which handles the nonlinearities and computationally intensive problem offline. Then maximum a posterior estimation is obtained by using the Bayesian theory. The efficacy of the estimator is illustrated by a simulated example .展开更多
A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optima...A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.展开更多
A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measure...A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.展开更多
A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and ...A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and unknown nonlinear functions in both drift and diffusion terms.First,an extensional stability notion and the related criterion are introduced.Then,a nonlinear observer to estimate the unmeasurable states is designed,and a systematic backstepping procedure to design an adaptive NN output-feedback controller is proposed such that the closed-loop system is stable in probability.The effectiveness of the proposed control scheme is demonstrated via a numerical example.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
轴承作为旋转机械的重要组件之一,及时对其进行健康监测与更换可有效避免设备停机,减少经济损失。首先基于自构建关联噪声驱动下的随机共振系统(stochastic resonance system driven by self-constructingly correlated noise, DSCSR),...轴承作为旋转机械的重要组件之一,及时对其进行健康监测与更换可有效避免设备停机,减少经济损失。首先基于自构建关联噪声驱动下的随机共振系统(stochastic resonance system driven by self-constructingly correlated noise, DSCSR),推导了在正弦激励下该系统输出的理论信噪比(signal-to-noise ratio, SNR)。研究发现通过调节此非线性系统的参数可观察到随机共振现象。其次,针对将随机共振现象用于故障诊断时需要准确的先验知识这一局限性,进一步提出了基于功率谱的信噪比评价指标,并以此来确定非线性系统随机共振发生时的最优系统参数,对最优参数系统输出信号进行功率谱分析来判断故障类型。最后,通过轴承故障诊断试验以及实际风机轴承内圈故障实例证明了DSCSR方法的有效性,以及其增强微弱故障特征并抑制其他谐波以及噪声的干扰的能力。展开更多
基金supported by the National Natural Science Foundation of China(61304020)
文摘This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of P. R. China (60572070, 60325311, 60534010) Natural Science Foundation of Liaoning Province (20022030)
文摘The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time, the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.
基金Supported by National Natural Science Foundation of China (60774010), Program for New Century Excellent Talents in University of China (NCET-05-0607), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
文摘适应州反馈的稳定为在的高顺序的随机的非线性的系统的一个类被调查函数 fi 的上面的界限(?? 铄吗??
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金supported by the National Natural Science Foundation of China (60804021)
文摘For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.
基金supported by the National Natural Science Foundation of China (60704013)the Special Foundation of East China University of Science and Technology for Youth Teacher (YH0157134)
文摘The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results.
基金supported by the National Natural Science Foundation of China (6097400161104121)the Fundamental Research Funds for the Central Universities (JUDCF11039)
文摘The Bayesian approach is considered as the most general formulation of the state estimation for dynamic systems. However, most of the existing Bayesian estimators of stochastic hybrid systems only focus on the Markov jump system, few liter- ature is related to the estimation problem of nonlinear stochastic hybrid systems with state dependent transitions. According to this problem, a new methodology which relaxes quite a restrictive as- sumption that the mode transition process must satisfy Markov properties is proposed. In this method, a general approach is presented to model the state dependent transitions, the state and output spaces are discreted into cell space which handles the nonlinearities and computationally intensive problem offline. Then maximum a posterior estimation is obtained by using the Bayesian theory. The efficacy of the estimator is illustrated by a simulated example .
基金Projects(61203234,61135001,61075029,61074179) supported by the National Natural Science Foundation of ChinaProject(20110491692) supported by the Postdoctoral Science Foundation of China
文摘A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.
基金supported by the UK Leverhulme Trust (F/00 120/BC)the National Natural Science Foundation of China (6082800760974029)
文摘A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.
基金supported by the National Natural Science Fundation of China (6080402160974139+3 种基金61075117)the Fundamental Research Funds for the Central Universities (JY10000970001K5051070000272103676)
文摘A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and unknown nonlinear functions in both drift and diffusion terms.First,an extensional stability notion and the related criterion are introduced.Then,a nonlinear observer to estimate the unmeasurable states is designed,and a systematic backstepping procedure to design an adaptive NN output-feedback controller is proposed such that the closed-loop system is stable in probability.The effectiveness of the proposed control scheme is demonstrated via a numerical example.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.