This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic...This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.展开更多
Field evidence has shown that large-scale and unstable discontinuous planes in the rock mass surrounding tunnels in rich water region are probably generated after excavation. The tunnel surrounding rock was divided in...Field evidence has shown that large-scale and unstable discontinuous planes in the rock mass surrounding tunnels in rich water region are probably generated after excavation. The tunnel surrounding rock was divided into three zones, including elastic zone, plastic damage zone and shear fracture zone for assessing the stability of the tunnel surrounding rock. By local hydrogeology, the stresses of surrounding rock of Jinshazhou circular tunnel was analyzed and the stress solutions on the elastic and plastic damage zones were obtained by applying the theories of fluid-solid coupling and elasto-plastic damage mechanics. The shear fracture zone generated by joints was studied and its range was determined by using Molar-Coulomb strength criterion. Finally, the correctness of the theoretical results was validated by comparing the scopes of shear fracture zones calculated in this paper with those from literature.展开更多
TMSR uses nuclear graphite as a neutron moderator, a reflector, and the structural material, and utilizes molten salt as a coolant. When running normally, the graphite components are immersed in the molten salt.Thus, ...TMSR uses nuclear graphite as a neutron moderator, a reflector, and the structural material, and utilizes molten salt as a coolant. When running normally, the graphite components are immersed in the molten salt.Thus, the nuclear graphite comes into direct contact with the molten salt, which infiltrates the open pores of the nuclear graphite. This infiltration may influence the stress analysis of the graphite component. In this study, a User Material subroutine was used to analyze the stress distribution of the graphite component, both with and without molten salt infiltration. Many influence factors were taken into consideration, such as the dose gradient, the shape of the permeation zone, and the permeation area. The results show that the dose gradient, shape, and area of the permeation zone all significantly influence the stress distribution. Furthermore, the results of the stress analysis indicate that for a regular graphite component with a square cross section, the peak maximum principal stress value occurs at the center of the cross section, and the symmetry of the maximum principal stress distributions was modified by quarter circle and half ellipse permeation zones.展开更多
文摘This paper discusses the calculation of plastic zone properties around circular tunnels to rock-masses that satisfy the Hoek–Brown failure criterion in non-hydrostatic condition,and reviews the calculation of plastic zone and displacement,and the basis of the convergence–confinement method in hydrostatic condition.A two-dimensional numerical simulation model was developed to gain understanding of the plastic zone shape.Plastic zone radius in any angles around the tunnel is analyzed and measured,using different values of overburden(four states)and stress ratio(nine states).Plastic zone radius equations were obtained from fitting curve to data which are dependent on the values of stress ratio,angle and plastic zone radius in hydrostatic condition.Finally validation of this equation indicate that results predict the real plastic zone radius appropriately.
基金The Program for New Century Excellent Talents in University ( No. NCET-06-0649)the Natural Science Foundation of Hubei Province (No.2005ABA303)
文摘Field evidence has shown that large-scale and unstable discontinuous planes in the rock mass surrounding tunnels in rich water region are probably generated after excavation. The tunnel surrounding rock was divided into three zones, including elastic zone, plastic damage zone and shear fracture zone for assessing the stability of the tunnel surrounding rock. By local hydrogeology, the stresses of surrounding rock of Jinshazhou circular tunnel was analyzed and the stress solutions on the elastic and plastic damage zones were obtained by applying the theories of fluid-solid coupling and elasto-plastic damage mechanics. The shear fracture zone generated by joints was studied and its range was determined by using Molar-Coulomb strength criterion. Finally, the correctness of the theoretical results was validated by comparing the scopes of shear fracture zones calculated in this paper with those from literature.
基金supported by the ‘‘Hundred Talent Program’’ of the Chinese Academy of Sciences,the Ministry of Human Resources and Social Security(No.Y419016031)the Strategic Priority Research Program of Chinese Academy of Science(No.XDA02040100)
文摘TMSR uses nuclear graphite as a neutron moderator, a reflector, and the structural material, and utilizes molten salt as a coolant. When running normally, the graphite components are immersed in the molten salt.Thus, the nuclear graphite comes into direct contact with the molten salt, which infiltrates the open pores of the nuclear graphite. This infiltration may influence the stress analysis of the graphite component. In this study, a User Material subroutine was used to analyze the stress distribution of the graphite component, both with and without molten salt infiltration. Many influence factors were taken into consideration, such as the dose gradient, the shape of the permeation zone, and the permeation area. The results show that the dose gradient, shape, and area of the permeation zone all significantly influence the stress distribution. Furthermore, the results of the stress analysis indicate that for a regular graphite component with a square cross section, the peak maximum principal stress value occurs at the center of the cross section, and the symmetry of the maximum principal stress distributions was modified by quarter circle and half ellipse permeation zones.