Variation and degradation of P-110 casing steel mechanical properties, due to sulfide stress cracking (SSC) in sour environments, was investigated using tensile and impact tests. These tests were carried out on specim...Variation and degradation of P-110 casing steel mechanical properties, due to sulfide stress cracking (SSC) in sour environments, was investigated using tensile and impact tests. These tests were carried out on specimens, which were pretreated under the following conditions for 168 hours: temperature, 60 ℃; pressure, 10 MPa; H2S partial pressure, 1 MPa and CO_(2) partial pressure, 1 MPa; preload stress, 80% of the yield strength (os); medium, simulated formation water. The reduction in tensile and impact strengths for P-110 casing specimens in corrosive environments were 28% and 54%, respectively. The surface morphology analysis indicated that surface damage and uniform plastic deformation occurred as a result of strain aging. Impact toughness of the casing decreased significantly and intergranular cracking occurred when specimens were maintained at a high stress level of 85% %.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equation...Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.展开更多
Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement.First-principles calculations are performed to research this mechanism by simulating the Ni(111) surface and the 5(...Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement.First-principles calculations are performed to research this mechanism by simulating the Ni(111) surface and the 5(012) grain boundary. The calculated adsorption energy suggests that Te atoms prefer diffusing along the grain boundary to forming the surface-reaction layer with Nb on surface of the Ni alloy. First-principles tensile tests show that the Nb segregation can enhance the cohesion of grain boundary. The strong Nb-Ni bonding can prevent the Te migration into the inside of the alloy. According to the Rice-Wang model, the strengthening/embrittling energies of Nb and Te are calculated, along with their mechanical and chemical components.The chemical bonds and electronic structures are analyzed to uncover the physical origin of the different effects of Te and Nb. Our work sheds lights on the effect of Nb additive on the Te-induced intergranular embrittlement in Hastelloy N alloy on the atomic and electronic level.展开更多
The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribut...The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310 S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface.Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.展开更多
Pitting and stress corrosion cracking(SCC) studies on the 316 N stainless steel(SS) weldments in aswelded(AW) and thermally aged(solution annealing(SA), 550C/4 h and 750C/1 h) conditions were carried out in acidic and...Pitting and stress corrosion cracking(SCC) studies on the 316 N stainless steel(SS) weldments in aswelded(AW) and thermally aged(solution annealing(SA), 550C/4 h and 750C/1 h) conditions were carried out in acidic and acidic chloride media. Pitting corrosion and SCC resistance was the highest for SA weldment, which was attributed to homogenization of microstructural and microchemical heterogeneities during solution annealing. SA specimen showed the most stable passive film as compared to AW weldment because of higher amount of delta-ferrite in AW weld metal, which resulted in an increased heterogeneity and inferior SCC resistance in AW. Stability of passive film was found to be adversely affected due to heat treatments(at 550C/4 h and 750C/1 h) because of the precipitation of carbide and sigma phases.展开更多
A wheel tracking test was modelled to gain better understanding of the deflection and stress-strain distribution in an overlaid cracked pavements with and without membrane interlayer (SAMI). For this purpose, commer...A wheel tracking test was modelled to gain better understanding of the deflection and stress-strain distribution in an overlaid cracked pavements with and without membrane interlayer (SAMI). For this purpose, commercial finite element software Abaqus 6.7-1 was used. Two different models were considered, one incorporating stress absorbing membrane interlayers (SAMIs) and the other without SAMI. In the study, full bond condition was assumed for the boundaries between the layers, and a linear elastic model was used for the analysis. The results show that introduction of SAMI caused greater deflection of the pavement. It is found that although with SAMIs, low stiffness is required, a very low stiffness may yield undesirable results. The results show that the introduction of SAMIs results in high strain concentration around the crack region, whilst the strain in the overlay is smaller than the values predicted in the models without SAMIs.展开更多
Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power...Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.展开更多
Based on the theory of Muskhelishvili, the general solutions for stress and strain of conjugate cracks in cubic quasicrystal are obtained, with which the stress intensity factors of cubic quasicrystal at crack tips an...Based on the theory of Muskhelishvili, the general solutions for stress and strain of conjugate cracks in cubic quasicrystal are obtained, with which the stress intensity factors of cubic quasicrystal at crack tips and the stress distribution functions of phonon and phason fields are given. The results show that though phason field is coupled with phonon field by constitutive equations, the stress intensity factors are not coupled with any other factors.展开更多
Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions...Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions are directly related to the jump in the displacements across opposite crack faces. Once the integral equations are solved, crack parameters of interest, such as the clack tip stress intensity factors, may be readily computed.For some specific examples of the problem, the integral equations are solved numerically by using a collocation technique, in order to compute the relevant stress intensity factors.展开更多
Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity f...Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.展开更多
基金support of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University in Chinathe National Natural Science Foundation of China (Grant No.51004084)
文摘Variation and degradation of P-110 casing steel mechanical properties, due to sulfide stress cracking (SSC) in sour environments, was investigated using tensile and impact tests. These tests were carried out on specimens, which were pretreated under the following conditions for 168 hours: temperature, 60 ℃; pressure, 10 MPa; H2S partial pressure, 1 MPa and CO_(2) partial pressure, 1 MPa; preload stress, 80% of the yield strength (os); medium, simulated formation water. The reduction in tensile and impact strengths for P-110 casing specimens in corrosive environments were 28% and 54%, respectively. The surface morphology analysis indicated that surface damage and uniform plastic deformation occurred as a result of strain aging. Impact toughness of the casing decreased significantly and intergranular cracking occurred when specimens were maintained at a high stress level of 85% %.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
文摘Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint_Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross_section is not thin_walled, but of small torsion rigidity is proposed. Some numerical examples are given.
基金Supported by Science and Technology Commission of Shanghai Municipality(No.11JC1414900)Project supported by the National Basic Research Program of China(No.2010CB934501)+2 种基金Thorium Molten Salts Reactor Fund(No.XDA02000000)the National Natural Science Foundation of China(No.11005148),the National Natural Science Foundation of China(No.51371188)the Special Presidential Foundation of the Chinese Academy of Science,China(No.29)
文摘Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement.First-principles calculations are performed to research this mechanism by simulating the Ni(111) surface and the 5(012) grain boundary. The calculated adsorption energy suggests that Te atoms prefer diffusing along the grain boundary to forming the surface-reaction layer with Nb on surface of the Ni alloy. First-principles tensile tests show that the Nb segregation can enhance the cohesion of grain boundary. The strong Nb-Ni bonding can prevent the Te migration into the inside of the alloy. According to the Rice-Wang model, the strengthening/embrittling energies of Nb and Te are calculated, along with their mechanical and chemical components.The chemical bonds and electronic structures are analyzed to uncover the physical origin of the different effects of Te and Nb. Our work sheds lights on the effect of Nb additive on the Te-induced intergranular embrittlement in Hastelloy N alloy on the atomic and electronic level.
基金supported by the National Natural Science Foundation of China(Nos.51271171 and 11775150)
文摘The effect of dissolved oxygen(DO) on the stress corrosion cracking(SCC) of 310 S in supercritical water was investigated using slow-strain-rate tensile tests.The tensile properties, fracture morphology, and distribution of the chemical composition of the oxide were analyzed to evaluate the SCC susceptibility of 310 S. The results showed that the rupture elongation decreased significantly as the degree of DO increased. A brittle fracture mode was observed on the fracture surface, and only intergranular cracking was observed on the surface of the gauge section, regardless of the DO. Cracks were widely distributed on the gauge surface near the fracture surface.Oxides were observed in the cracks with two-layered structures, i.e., a Cr-rich inner oxide layer and an Fe-rich outer oxide layer.
文摘Pitting and stress corrosion cracking(SCC) studies on the 316 N stainless steel(SS) weldments in aswelded(AW) and thermally aged(solution annealing(SA), 550C/4 h and 750C/1 h) conditions were carried out in acidic and acidic chloride media. Pitting corrosion and SCC resistance was the highest for SA weldment, which was attributed to homogenization of microstructural and microchemical heterogeneities during solution annealing. SA specimen showed the most stable passive film as compared to AW weldment because of higher amount of delta-ferrite in AW weld metal, which resulted in an increased heterogeneity and inferior SCC resistance in AW. Stability of passive film was found to be adversely affected due to heat treatments(at 550C/4 h and 750C/1 h) because of the precipitation of carbide and sigma phases.
文摘A wheel tracking test was modelled to gain better understanding of the deflection and stress-strain distribution in an overlaid cracked pavements with and without membrane interlayer (SAMI). For this purpose, commercial finite element software Abaqus 6.7-1 was used. Two different models were considered, one incorporating stress absorbing membrane interlayers (SAMIs) and the other without SAMI. In the study, full bond condition was assumed for the boundaries between the layers, and a linear elastic model was used for the analysis. The results show that introduction of SAMI caused greater deflection of the pavement. It is found that although with SAMIs, low stiffness is required, a very low stiffness may yield undesirable results. The results show that the introduction of SAMIs results in high strain concentration around the crack region, whilst the strain in the overlay is smaller than the values predicted in the models without SAMIs.
文摘Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.
基金Science Research Foundation of Shang-hai in China (No.2000SG31& 2004096)Shanghai Leading Academic Discipline Project (No.T0601)
文摘Based on the theory of Muskhelishvili, the general solutions for stress and strain of conjugate cracks in cubic quasicrystal are obtained, with which the stress intensity factors of cubic quasicrystal at crack tips and the stress distribution functions of phonon and phason fields are given. The results show that though phason field is coupled with phonon field by constitutive equations, the stress intensity factors are not coupled with any other factors.
文摘Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions are directly related to the jump in the displacements across opposite crack faces. Once the integral equations are solved, crack parameters of interest, such as the clack tip stress intensity factors, may be readily computed.For some specific examples of the problem, the integral equations are solved numerically by using a collocation technique, in order to compute the relevant stress intensity factors.
基金Project supported by the National Natural Science Foundation of China (Nos.50375130and50323003), the Special Foundation of National Excellent Ph.D.Thesis (No.200234) and thePlanned Itemforthe Outstanding Young Teachers ofMinistry ofEducationofChina (No.2101)
文摘Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.