Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small...Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS.展开更多
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a...To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.展开更多
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated...Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.展开更多
The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will l...The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.展开更多
基金supported by the National Natural Science Foundation of China(61773306).
文摘Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS.
基金Project(60604011) supported by the National Natural Science Foundation of China
文摘To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
基金supported by the National Natural Science Foundation of China(61722301)
文摘Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method.
基金Project supported in part by Program for New Century Excellent Talents in University (NCET) of China
文摘The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.