Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ...Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.展开更多
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin...Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.展开更多
Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these f...Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.展开更多
Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally ...Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally is significant.However,they are frequently subjected to land use changes,promoting increases in CO_(2) emissions.In Uruguay,subtropical wooded savannas cover around 100,000 ha,of which approximately 28%is circumscribed to sodic soils(i.e.,subtropical halophytic wooded savannas).Nevertheless,there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations.The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Rio Uruguay.This work aimed to estimate the contribution of the main ecosystem components(e.g.,soil,trees,shrubs,and herbaceous plants)to the C stock.Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter(BD)and total height(H).The fitted equations accounted for between 77%and 98%of the aerial biomass variance of Netuma affinis and Vachellia caven.For shrubs(Baccharis sp.),the adjusted equation accounted for 86%of total aerial biomass.C stock for the entire system was 116.71±11.07 Mg·ha^(-1),of which 90.7%was allocated in the soil,8.3%in the trees,0.8%in the herbaceous plants,and 0.2%in the shrubs.These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario.展开更多
A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alp...A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation-MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains, Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var. alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass-237.3 in(Elevation) +494.36; R^2=0.8092; P〈0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p〈0.05). The nutrient stock of five vegetations was averagely 72.46 kg.hm^-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm^-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p〈0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t.hm^-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm^-2, respectively.展开更多
A service station plays an important role in the petroleum product distribution terminal. With the increase in petroleum consumption in China, the inventory theory should be applied in the stock control of service st...A service station plays an important role in the petroleum product distribution terminal. With the increase in petroleum consumption in China, the inventory theory should be applied in the stock control of service stations. In this paper the inventory theory including its background and characteristics is introduced. At the same time, the application of the theory in some trades today, especially in petroleum trade, is analyzed. Then (s, S) stochastic model is advanced, which is established according to the principle of operational research and, based on this model, a sample is given, which discusses the details of application in the stock control of service stations. The sample is simplified but implies the validity of the model in optimizing the storage of petroleum products in the market.展开更多
Stock price forecasting is an important issue and interesting topic in financial markets.Because reasonable and accurate forecasts have the potential to generate high economic benefits,many researchers have been invol...Stock price forecasting is an important issue and interesting topic in financial markets.Because reasonable and accurate forecasts have the potential to generate high economic benefits,many researchers have been involved in the study of stock price forecasts.In this paper,the DWT-ARIMAGSXGB hybrid model is proposed.Firstly,the discrete wavelet transform is used to split the data set into approximation and error parts.Then the ARIMA(0,1,1),ARIMA(1,1,0),ARIMA(2,1,1)and ARIMA(3,1,0)models respectively process approximate partial data and the improved xgboost model(GSXGB)handles error partial data.Finally,the prediction results are combined using wavelet reconstruction.According to the experimental comparison of 10 stock data sets,it is found that the errors of DWT-ARIMA-GSXGB model are less than the four prediction models of ARIMA,XGBoost,GSXGB and DWT-ARIMA-XGBoost.The simulation results show that the DWT-ARIMA-GSXGB stock price prediction model has good approximation ability and generalization ability,and can fit the stock index opening price well.And the proposed model is considered to greatly improve the predictive performance of a single ARIMA model or a single XGBoost model in predicting stock prices.展开更多
Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to...Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to help meet climate-change mitigation goals.Carbon stocks were quantified at three Ontario boreal mixedwood sites.A harvested stand,a juvenile stand replanted with spruce seedlings and a mature stand had total carbon stocks(±SE)of 133±13 at age 2,130±13 at age 25,and 207±15 Mg C ha^-1 at age 81 years.At the clear-cut site,stocks were reduced by about 40%or 90 Mg C ha^-1 at harvest.Vegetation held 27,34 and 62%of stocks,while detritus held 34,29 and 13%of stocks at age 2,25 and 81,respectively.Mineral soil carbon stocks averaged 51 Mg C ha^-1,and held 38,37 and 25%of stocks.Aboveground net primary productivity(±SE)in the harvested and juvenile stand was 2.1±0.2 and 3.7±0.3 Mg C ha^-1 per annum(p.a.),compared to 2.6±2.5 Mg C ha^-1 p.a.in the mature stand.The mature canopies studied had typical boreal mixedwood composition and mean carbon densities of 208 Mg C ha^-1,which is above average for managed Canadian boreal forest ecosystems.A comparison of published results from Canadian boreal forest ecosystems showed that carbon stocks in mixedwood stands are typically higher than coniferous stands at all ages,which was also true for stocks in vegetation and detritus.Also,aboveground net primary productivity was typically found to be higher in mixedwood than in coniferous boreal forest stands over a range of ages.Measurements from this study,together with those published from the other boreal forest stands demonstrate the potential for enhanced carbon sequestration through modified forest management practices to take advantage of Canadian boreal mixedwood stand characteristics.展开更多
A study was conducted in the forest area of Chittagong (South) Forest Division, Chittagong, Bangladesh for developing al- lometric models to estimate biomass organic carbon stock in the forest vegetation. Allometric...A study was conducted in the forest area of Chittagong (South) Forest Division, Chittagong, Bangladesh for developing al- lometric models to estimate biomass organic carbon stock in the forest vegetation. Allometric models were tested separately for trees (divided into two DBH classes), shrubs, herbs and grasses. Model using basal area alone was found to be the best predictor of biomass organic carbon stock in trees because of high coefficient of determination (r^2 is 0.73697 and 0.87703 for 〉 5 cm to ≤ 15 cm and 〉 15 cm DBH (diameter at breast height) rang, respectively) and significance of regression (P is 0.000 for each DBH range) coefficients for both DBH range. The other models using height alone; DBH alone; height and DBH together; height, DBH and wood density; with liner and logarithmic relations produced relatively poor coefficient of determination. The allometric models for dominant 20 tree species were also developed separately and equation using basal area produced higher value of determination of coefficient. Allometric model using total biomass alone for shrubs, herbs and grasses produced higher value of determination of coefficient and significance of regression coefficient (r^2 is 0.87948 and 0.87325 for shrubs, herbs and grasses, respectively and P is 0.000 for each). The estimation of biomass organic carbon is a complicated and time consuming research. The allometric models developed in the present study can be utilized for future estimation of organic carbon stock in forest vegetation in Bangladesh as well as other tropical countries of the world.展开更多
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05′10″N, 100°37′02″E), Thaila...A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05′10″N, 100°37′02″E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results re- vealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha^-1, simplified expression of Mg (carbon)·ha^-1) was significantly greater (P〈 0.05) than the reforestation (195.25 ± 14.38 Mg·ha^-1) and the agricultural land (103.10 ± 18.24 Mg·ha^-1). Soil organic carbon in the forests (196.24 ± 22.81 Mg·ha^-1) was also significantly greater (P〈 0.05) than the reforestation (146.83 ± 7.22 Mg·ha^-1) and the agricultural land (95.09± 14.18 Mg·ha^-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon:soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.展开更多
Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to fir...Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to first dead and first live branch and branchiness) and stem and crown form of 24-year-old pedunculate oak (Quercus robur [L.]) and European ash (Fraxinus excelsior [L.]) were affected by initial spacing. Data were recorded from two replicate single-species Nelder wheels located in southern Germany with eight initial stocking regimes varying from 1,020 to 30,780 seedlings·ha?1. Mortality substantially decreased with increasing initial growing space but significantly differed among the two species, averaging 59% and 15% for oak and ash plots, respectively. In contrast to oak, the low self-thinning rate found in the ash plots over the investigated study period resulted in a high number of smaller intermediate or suppressed trees, eventually retarding individual tree as well as overall stand development. As a result, oak gained greater stem dimensions throughout all initial spacing regimes and the average height of ash significantly increased with initial growing space. The survival of lower crown class ashes also appeared to accelerate self-pruning dynamics. In comparison to oak, we observed less dead and live primary branches as well as a smaller number of epicormic shoots along the first 6 m of the lower stem of dominant and co-dominant ashes in all spacing regimes. Whereas stem form of both species was hardly affected by initial growing space, the percentage of brushy crowns significantly increased with initial spacing in oak and ash. Our findings suggest that initial stockings of ca. 12,000 seedlings per hectare in oak and 2,500 seedlings per hectare in ash will guarantee a sufficient number of at least 300 potential crop trees per hectare in pure oak and ash plantations at the end of the self-thinning phase, respectively. If the problem of epicormic shoots and inadequate self-pruning can be controlled with trainer species, the initial stocking may be reduced significantly in oak.展开更多
基金funded by the Czech University of Life Sciences Prague(Internal Grant Agency:A_03_22-43110/1312/3101)the Czech Science(GACR 21-27454S)。
文摘Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.
基金funded by National Key Research and Development Program(2023YFD220080430&2017YFD0600404)。
文摘Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant ZDBS-LY-DQC019)the National Key Research and Development Program of China(2023YFE0124300)+4 种基金the National Natural Science Foundation of China(32301344)Major Program of Institute of Applied EcologyChinese Academy of Sciences(IAEMP202201)supported by grants from the U.S.National Science Foundation(DEB 2240431)the Seeding Projects for Enabling Excellence and Distinction(SPEED)Program at Washington University in St.Louis。
文摘Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.
基金funded by the Comision Sectorial de Investigacion Cientifica(CSIC)[ID-501]the Agencia Nacional de Investigacion e Innovacion(ANII)[POS_EXT_2023_1_174913]。
文摘Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally is significant.However,they are frequently subjected to land use changes,promoting increases in CO_(2) emissions.In Uruguay,subtropical wooded savannas cover around 100,000 ha,of which approximately 28%is circumscribed to sodic soils(i.e.,subtropical halophytic wooded savannas).Nevertheless,there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations.The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Rio Uruguay.This work aimed to estimate the contribution of the main ecosystem components(e.g.,soil,trees,shrubs,and herbaceous plants)to the C stock.Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter(BD)and total height(H).The fitted equations accounted for between 77%and 98%of the aerial biomass variance of Netuma affinis and Vachellia caven.For shrubs(Baccharis sp.),the adjusted equation accounted for 86%of total aerial biomass.C stock for the entire system was 116.71±11.07 Mg·ha^(-1),of which 90.7%was allocated in the soil,8.3%in the trees,0.8%in the herbaceous plants,and 0.2%in the shrubs.These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario.
基金This research was supported by National Natural Science Foundation of China (No: 40473054)Agricultural Technological Production Translation of Science and Technology of Ministry (No:05EFN216600446).
文摘A study was conducted to test the correlation between biomass and elevation and the differences in concentration and storks of nutrients among five vegetation types (Felsenmeer alpine tundra vegetation-FA, Lithic alpine tundra vegetation-LA, Typical alpine tundra vegetation-TA, Meadow alpine tundra vegetation-MA, and Swamp alpine tundra vegetation-SA) on alpine tundra of Changbai Mountains, Jilin Province, China in growing seasons of 2003, 2004 and 2005. The biomass of 43 mono-species and soil nutrients in alpine tundra ecosystem were also investigated. Dominant species from Ericaceae (such as Rhododendron chrysanthum and Vaccinium jliginosum var. alpinum) were taken to analyze organ biomass distribution. Result showed that the biomass and elevation had a significant correlation (Biomass-237.3 in(Elevation) +494.36; R^2=0.8092; P〈0.05). No significant differences were found in phosphorus and sulphur concentrations of roots, stems and leaves among the five vegetation types. There were significant differences in nitrogen and phosphorus stocks of roots, stems and leaves and in sulphur stock of stems and leaves among TA, MA, and SA vegetation types (p〈0.05). The nutrient stock of five vegetations was averagely 72.46 kg.hm^-2, of which N, P, S were 48.55, 10.33 and 13.61 kg·hm^-2, respectively. Soil N and S concentrations in meadow alpine tundra soil type was significantly higher than those in other four soil types (Cold desert alpine tundra soil, Lithic alpine tundra soil, Peat alpine tundra soil, and Gray alpine tundra soil). Phosphorous concentration in SA type was higher (p〈0.05) than in other types. Soil nutrient stock (0-20cm) was averagely 39.59 t.hm^-2, of which N, P, S were 23.74, 5.86, 9.99 t·hm^-2, respectively.
文摘A service station plays an important role in the petroleum product distribution terminal. With the increase in petroleum consumption in China, the inventory theory should be applied in the stock control of service stations. In this paper the inventory theory including its background and characteristics is introduced. At the same time, the application of the theory in some trades today, especially in petroleum trade, is analyzed. Then (s, S) stochastic model is advanced, which is established according to the principle of operational research and, based on this model, a sample is given, which discusses the details of application in the stock control of service stations. The sample is simplified but implies the validity of the model in optimizing the storage of petroleum products in the market.
文摘Stock price forecasting is an important issue and interesting topic in financial markets.Because reasonable and accurate forecasts have the potential to generate high economic benefits,many researchers have been involved in the study of stock price forecasts.In this paper,the DWT-ARIMAGSXGB hybrid model is proposed.Firstly,the discrete wavelet transform is used to split the data set into approximation and error parts.Then the ARIMA(0,1,1),ARIMA(1,1,0),ARIMA(2,1,1)and ARIMA(3,1,0)models respectively process approximate partial data and the improved xgboost model(GSXGB)handles error partial data.Finally,the prediction results are combined using wavelet reconstruction.According to the experimental comparison of 10 stock data sets,it is found that the errors of DWT-ARIMA-GSXGB model are less than the four prediction models of ARIMA,XGBoost,GSXGB and DWT-ARIMA-XGBoost.The simulation results show that the DWT-ARIMA-GSXGB stock price prediction model has good approximation ability and generalization ability,and can fit the stock index opening price well.And the proposed model is considered to greatly improve the predictive performance of a single ARIMA model or a single XGBoost model in predicting stock prices.
基金provided by the Canadian Forest Service,with in-kind support from the Ontario Ministry of Natural Resources and Forestry
文摘Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to help meet climate-change mitigation goals.Carbon stocks were quantified at three Ontario boreal mixedwood sites.A harvested stand,a juvenile stand replanted with spruce seedlings and a mature stand had total carbon stocks(±SE)of 133±13 at age 2,130±13 at age 25,and 207±15 Mg C ha^-1 at age 81 years.At the clear-cut site,stocks were reduced by about 40%or 90 Mg C ha^-1 at harvest.Vegetation held 27,34 and 62%of stocks,while detritus held 34,29 and 13%of stocks at age 2,25 and 81,respectively.Mineral soil carbon stocks averaged 51 Mg C ha^-1,and held 38,37 and 25%of stocks.Aboveground net primary productivity(±SE)in the harvested and juvenile stand was 2.1±0.2 and 3.7±0.3 Mg C ha^-1 per annum(p.a.),compared to 2.6±2.5 Mg C ha^-1 p.a.in the mature stand.The mature canopies studied had typical boreal mixedwood composition and mean carbon densities of 208 Mg C ha^-1,which is above average for managed Canadian boreal forest ecosystems.A comparison of published results from Canadian boreal forest ecosystems showed that carbon stocks in mixedwood stands are typically higher than coniferous stands at all ages,which was also true for stocks in vegetation and detritus.Also,aboveground net primary productivity was typically found to be higher in mixedwood than in coniferous boreal forest stands over a range of ages.Measurements from this study,together with those published from the other boreal forest stands demonstrate the potential for enhanced carbon sequestration through modified forest management practices to take advantage of Canadian boreal mixedwood stand characteristics.
文摘A study was conducted in the forest area of Chittagong (South) Forest Division, Chittagong, Bangladesh for developing al- lometric models to estimate biomass organic carbon stock in the forest vegetation. Allometric models were tested separately for trees (divided into two DBH classes), shrubs, herbs and grasses. Model using basal area alone was found to be the best predictor of biomass organic carbon stock in trees because of high coefficient of determination (r^2 is 0.73697 and 0.87703 for 〉 5 cm to ≤ 15 cm and 〉 15 cm DBH (diameter at breast height) rang, respectively) and significance of regression (P is 0.000 for each DBH range) coefficients for both DBH range. The other models using height alone; DBH alone; height and DBH together; height, DBH and wood density; with liner and logarithmic relations produced relatively poor coefficient of determination. The allometric models for dominant 20 tree species were also developed separately and equation using basal area produced higher value of determination of coefficient. Allometric model using total biomass alone for shrubs, herbs and grasses produced higher value of determination of coefficient and significance of regression coefficient (r^2 is 0.87948 and 0.87325 for shrubs, herbs and grasses, respectively and P is 0.000 for each). The estimation of biomass organic carbon is a complicated and time consuming research. The allometric models developed in the present study can be utilized for future estimation of organic carbon stock in forest vegetation in Bangladesh as well as other tropical countries of the world.
文摘A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05′10″N, 100°37′02″E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results re- vealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha^-1, simplified expression of Mg (carbon)·ha^-1) was significantly greater (P〈 0.05) than the reforestation (195.25 ± 14.38 Mg·ha^-1) and the agricultural land (103.10 ± 18.24 Mg·ha^-1). Soil organic carbon in the forests (196.24 ± 22.81 Mg·ha^-1) was also significantly greater (P〈 0.05) than the reforestation (146.83 ± 7.22 Mg·ha^-1) and the agricultural land (95.09± 14.18 Mg·ha^-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon:soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.
文摘Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to first dead and first live branch and branchiness) and stem and crown form of 24-year-old pedunculate oak (Quercus robur [L.]) and European ash (Fraxinus excelsior [L.]) were affected by initial spacing. Data were recorded from two replicate single-species Nelder wheels located in southern Germany with eight initial stocking regimes varying from 1,020 to 30,780 seedlings·ha?1. Mortality substantially decreased with increasing initial growing space but significantly differed among the two species, averaging 59% and 15% for oak and ash plots, respectively. In contrast to oak, the low self-thinning rate found in the ash plots over the investigated study period resulted in a high number of smaller intermediate or suppressed trees, eventually retarding individual tree as well as overall stand development. As a result, oak gained greater stem dimensions throughout all initial spacing regimes and the average height of ash significantly increased with initial growing space. The survival of lower crown class ashes also appeared to accelerate self-pruning dynamics. In comparison to oak, we observed less dead and live primary branches as well as a smaller number of epicormic shoots along the first 6 m of the lower stem of dominant and co-dominant ashes in all spacing regimes. Whereas stem form of both species was hardly affected by initial growing space, the percentage of brushy crowns significantly increased with initial spacing in oak and ash. Our findings suggest that initial stockings of ca. 12,000 seedlings per hectare in oak and 2,500 seedlings per hectare in ash will guarantee a sufficient number of at least 300 potential crop trees per hectare in pure oak and ash plantations at the end of the self-thinning phase, respectively. If the problem of epicormic shoots and inadequate self-pruning can be controlled with trainer species, the initial stocking may be reduced significantly in oak.