期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
求解一类非光滑凸优化问题的相对加速SGD算法
1
作者 张文娟 冯象初 +2 位作者 肖锋 黄姝娟 李欢 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期147-157,共11页
一阶优化算法由于其计算简单、代价小,被广泛应用于机器学习、大数据科学、计算机视觉等领域,然而,现有的一阶算法大多要求目标函数具有Lipschitz连续梯度,而实际中的很多应用问题不满足该要求。在经典的梯度下降算法基础上,引入随机和... 一阶优化算法由于其计算简单、代价小,被广泛应用于机器学习、大数据科学、计算机视觉等领域,然而,现有的一阶算法大多要求目标函数具有Lipschitz连续梯度,而实际中的很多应用问题不满足该要求。在经典的梯度下降算法基础上,引入随机和加速,提出一种相对加速随机梯度下降算法。该算法不要求目标函数具有Lipschitz连续梯度,而是通过将欧氏距离推广为Bregman距离,从而将Lipschitz连续梯度条件减弱为相对光滑性条件。相对加速随机梯度下降算法的收敛性与一致三角尺度指数有关,为避免调节最优一致三角尺度指数参数的工作量,给出一种自适应相对加速随机梯度下降算法。该算法可自适应地选取一致三角尺度指数参数。对算法收敛性的理论分析表明,算法迭代序列的目标函数值收敛于最优目标函数值。针对Possion反问题和目标函数的Hessian阵算子范数随变量范数多项式增长的极小化问题的数值实验表明,自适应相对加速随机梯度下降算法和相对加速随机梯度下降算法的收敛性能优于相对随机梯度下降算法。 展开更多
关键词 凸优化 非光滑优化 相对光滑 随机规划 梯度方法 加速随机梯度下降
在线阅读 下载PDF
基于信道特征的物联网设备物理层认证
2
作者 江凌云 史秀秀 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期21-28,共8页
目前的物联网设备处在复杂的环境中且资源有限,基于信道特征的被动型物理层认证(Physical Layer Authentication,PLA)方式非常适合应用于目前的物联网设备。而传统基于信道特征的PLA采集到的是静态特征,导致现实中的时变信道认证概率较... 目前的物联网设备处在复杂的环境中且资源有限,基于信道特征的被动型物理层认证(Physical Layer Authentication,PLA)方式非常适合应用于目前的物联网设备。而传统基于信道特征的PLA采集到的是静态特征,导致现实中的时变信道认证概率较低。针对这一问题,使用支持向量机(Support Vector Machine,SVM)对时变信道下提取的信道特征进行分类认证,并使用在线学习随机梯度下降(Stochastic Gradient Descent,SGD)来更新SVM模型,实现了分类模型随着信道的变化而更新。此外,使用了鲁棒主成分分析(Robust Principal Component Analysis,RPCA)对提取的信道特征进行降维处理,降低获取SVM模型的复杂度并抑制了信道噪声的干扰。仿真结果表明,方案改善了时变信道下的认证概率,提高了鲁棒性。 展开更多
关键词 物理层认证 支持向量机 随机梯度下降 鲁棒主成分分析
在线阅读 下载PDF
基于无冲突并行随机梯度下降的图布局求解方法
3
作者 王智 薛明亮 +2 位作者 王一凡 钟发海 汪云海 《计算机辅助设计与图形学学报》 北大核心 2025年第6期1063-1072,共10页
应力模型是计算节点连接图布局时最常用的方法之一.随机梯度下降法由于具有很好的收敛性,常被用于求解应力模型,但该方法难以实现有效并行.虽然无锁随机梯度下降方法能大幅提高并行效率,但其求解过程中常存在线程冲突,导致结果准确性低... 应力模型是计算节点连接图布局时最常用的方法之一.随机梯度下降法由于具有很好的收敛性,常被用于求解应力模型,但该方法难以实现有效并行.虽然无锁随机梯度下降方法能大幅提高并行效率,但其求解过程中常存在线程冲突,导致结果准确性低.为了提高并行图布局的效率和准确性,提出一种无冲突的随机梯度下降的并行求解方法.首先提出一种面向应力模型的线程分配算法,将与节点j相同的点对分配到同一线程内计算,保证基于随机梯度下降方法的图布局无冲突化求解;然后仅对线程内的样本随机洗牌并减少次数,进一步提升并行效率.在16个不同规模的真实数据集上进行实验,并将所提方法应用在稀疏化应力模型的求解上,实验结果显示所提方法在求解精度上无损失且求解速度提高10倍以上,从布局质量和运行效率2个方面证明了该方法的高效性和可用性. 展开更多
关键词 图布局 随机梯度下降 并行计算 图可视化
在线阅读 下载PDF
基于数据压缩和梯度追踪的方差缩减的联邦优化算法
4
作者 贾泽慧 李登辉 +1 位作者 刘治宇 黄洁茹 《南京理工大学学报》 北大核心 2025年第2期155-166,共12页
为克服联邦学习中的计算成本、通信成本以及数据异质等挑战,该文提出了一种基于数据压缩和梯度追踪的方差缩减的联邦优化算法(FedCOMGATE-VR)。与传统依赖简单随机梯度估计的联邦学习算法不同,FedCOMGATE-VR通过引入方差缩减的随机梯度... 为克服联邦学习中的计算成本、通信成本以及数据异质等挑战,该文提出了一种基于数据压缩和梯度追踪的方差缩减的联邦优化算法(FedCOMGATE-VR)。与传统依赖简单随机梯度估计的联邦学习算法不同,FedCOMGATE-VR通过引入方差缩减的随机梯度估计,能够使用更大的步长,从而加速算法收敛;同时,采用数据压缩技术处理上传的模型参数,减少了通信成本;此外,结合梯度追踪技术,准确追踪局部梯度与全局梯度之间的偏差,有效应对数据异质的联邦学习场景。理论方面,该文在非凸情形下给出了算法的次线性收敛率,并在强凸情形下给出了算法的线性收敛率。此外,该文将FedCOMGATE-VR用于对Fashion-MNIST和CIFAR-10数据集进行分类训练,并与已有算法在不同参数设置(步长、本地更新次数等)下进行对比实验。实验结果表明,FedCOMGATE-VR能够适应复杂的异质数据环境,且在达到相同预设训练准确率时,该算法较FedCOMGATE通信次数降低约20%,总迭代次数降低约66%,有效降低了通信和计算成本。 展开更多
关键词 联邦学习 随机梯度下降 方差缩减 数据异质
在线阅读 下载PDF
基于动量的非凸随机梯度下降的高概率界限
5
作者 李少杰 刘勇 《计算机学报》 北大核心 2025年第4期763-778,共16页
基于动量的随机梯度下降(Stochastic Gradient Descent with Momentum, SGDM)在机器学习中得到了广泛应用,但其理论性质尚缺乏深入理解。在非凸领域,现有文献对SGDM的分析主要集中在期望意义上,而高概率的分析相对较少。高概率结果的重... 基于动量的随机梯度下降(Stochastic Gradient Descent with Momentum, SGDM)在机器学习中得到了广泛应用,但其理论性质尚缺乏深入理解。在非凸领域,现有文献对SGDM的分析主要集中在期望意义上,而高概率的分析相对较少。高概率结果的重要性在于它适用于样本空间中的最坏情况。针对这一问题,本文为SGDM提供了高概率的收敛界限和泛化界限,推导出的收敛界限与现有的期望结果相匹配,并且据我们所知,推导出的泛化界限是SGDM的首次提出。此外,同时考虑收敛和泛化有助于理解SGDM在实际应用中的优良性能,本文的理论结果解释了两个新近提出的SGDM算法的优越性。最后,本文通过数值实验验证了理论分析所用假设的合理性,并且验证了所用假设如何影响泛化界限的变化速率。 展开更多
关键词 随机梯度下降 优化界限 泛化界限 非凸优化
在线阅读 下载PDF
基于样本重要性的分布式深度学习通信优化策略
6
作者 蒙玉功 《现代电子技术》 北大核心 2025年第13期77-82,共6页
分布式深度学习中的计算节点需要频繁地与服务器进行梯度数据交换,从而产生较大的通信开销。针对上述问题,文中提出一种基于样本重要性的分布式深度学习通信优化策略。主要包括三个设计内容:首先,通过验证性实验探索数据样本的重要性分... 分布式深度学习中的计算节点需要频繁地与服务器进行梯度数据交换,从而产生较大的通信开销。针对上述问题,文中提出一种基于样本重要性的分布式深度学习通信优化策略。主要包括三个设计内容:首先,通过验证性实验探索数据样本的重要性分布;其次,通过交叉熵损失评估数据样本的重要性;最后,结合网络状态感知机制,以端到端的网络时延作为网络状态的反馈指标,计算节点动态调整传输梯度的压缩比,在保证模型收敛的同时减少网络通信量,进而提高分布式深度学习的训练效率。实验结果表明,所提方法在不同规模的分布式训练场景下能够有效提高通信效率。与现有的梯度压缩策略相比,所提方法最多可以减少40%的分布式训练时间。 展开更多
关键词 分布式深度学习 随机梯度下降 样本重要性 交叉熵 网络状态感知 动态压缩
在线阅读 下载PDF
基于随机采样的方差缩减优化算法
7
作者 郭振华 闫瑞栋 +2 位作者 邱志勇 赵雅倩 李仁刚 《计算机科学与探索》 北大核心 2025年第3期667-681,共15页
随机梯度下降(SGD)算法因其性能优异而引起了机器学习和深度学习等领域研究人员的广泛关注。然而,SGD使用单样本随机梯度近似样本全梯度导致算法在迭代过程中引入了额外的方差,使得算法的收敛曲线震荡甚至发散,导致其收敛速率缓慢。因此... 随机梯度下降(SGD)算法因其性能优异而引起了机器学习和深度学习等领域研究人员的广泛关注。然而,SGD使用单样本随机梯度近似样本全梯度导致算法在迭代过程中引入了额外的方差,使得算法的收敛曲线震荡甚至发散,导致其收敛速率缓慢。因此,有效减小方差成为当前关键挑战。提出了一种基于小批量随机采样的方差缩减优化算法(DM-SRG),并应用于求解凸优化及非凸优化问题。算法主要特征在于设计了内外双循环结构:外循环结构采用小批量随机样本计算梯度近似全梯度,以达到减少梯度计算开销的目的;内循环结构采用小批量随机样本计算梯度并代替单样本随机梯度,提升算法收敛稳定性。针对非凸目标函数与凸目标函数,理论分析证明了DMSRG算法具有次线性收敛速率。此外,设计了基于计算单元性能评估模型的动态样本容量调整策略,以提高系统训练效率。为评估算法的有效性,分别在不同规模的真实数据集上开展了数值模拟实验。实验结果表明算法较对比算法损失函数减少18.1%并且平均耗时降低8.22%。 展开更多
关键词 随机梯度下降 方差缩减 凸优化 非凸优化 收敛速率
在线阅读 下载PDF
PMUS-HOSGD张量分解方法及其在标签推荐中的应用 被引量:3
8
作者 杨林 顾军华 +2 位作者 官磊 张宇娟 彭玉青 《计算机工程》 CAS CSCD 北大核心 2018年第11期300-305,312,共7页
目前的标签推荐系统使用张量来存储"用户-资源-标签"三维数据,以挖掘三者之间潜在的语义关联。为更好地解决三维数据的稀疏性问题,避免张量填充造成的数据失真,提出基于标签惩罚机制的张量构建方法PM US和基于随机梯度下降的... 目前的标签推荐系统使用张量来存储"用户-资源-标签"三维数据,以挖掘三者之间潜在的语义关联。为更好地解决三维数据的稀疏性问题,避免张量填充造成的数据失真,提出基于标签惩罚机制的张量构建方法PM US和基于随机梯度下降的张量分解方法 HOSGD。利用标签惩罚机制和用户评分构建张量,使用随机梯度下降法对张量的展开矩阵进行分解。在此基础上,结合PMUS和HOSGD提出PMUS-HOSGD算法对数据进行处理,根据结果为用户进行个性化标签推荐。在数据集MovieLens上的实验结果表明,与CubeALS、HOSVD和CF算法相比,该算法能够有效提高标签推荐的准确率。 展开更多
关键词 标签推荐 数据稀疏性 张量构建 张量分解 惩罚机制 随机梯度下降
在线阅读 下载PDF
基于SGD的决策级融合维度情感识别方法 被引量:3
9
作者 胡新荣 陈志恒 +3 位作者 刘军平 彭涛 何儒汉 何凯 《郑州大学学报(理学版)》 北大核心 2022年第4期49-54,共6页
在双模态维度情感识别中,存在由于信息不全面而导致预测性能不高的缺陷,且使用决策级融合方法进行融合大多依赖支持向量回归算法,但该算法无法有效处理大样本情况。为了解决以上问题,在语音和文本模态的基础上增加动作捕捉(motion captu... 在双模态维度情感识别中,存在由于信息不全面而导致预测性能不高的缺陷,且使用决策级融合方法进行融合大多依赖支持向量回归算法,但该算法无法有效处理大样本情况。为了解决以上问题,在语音和文本模态的基础上增加动作捕捉(motion capture,Mocap)数据,并针对该多模态数据提出一种基于随机梯度下降(stochastic gradient descent,SGD)的决策级融合维度情感识别方法。结合多任务学习机制,利用不同的深度学习模型分别对语音、文本和Mocap特征进行训练,并基于决策级融合方法实现多模态维度情感识别。在IEMOCAP数据集上的实验结果表明,Mocap数据更有助于提高效价维的值,结合更多情感数据有助于提升维度情感识别的预测性能,基于SGD进行决策级融合得到的一致性相关系数均值高于其他回归算法。 展开更多
关键词 随机梯度下降 多模态 维度情感识别 特征融合 动作捕捉数据 多任务学习
在线阅读 下载PDF
分布式深度学习框架下基于性能感知的DBS-SGD算法 被引量:12
10
作者 纪泽宇 张兴军 +2 位作者 付哲 高柏松 李靖波 《计算机研究与发展》 EI CSCD 北大核心 2019年第11期2396-2409,共14页
通过增加模型的深度以及训练数据的样本数量,深度神经网络模型能够在多个机器学习任务中获得更好的性能,然而这些必要的操作会使得深度神经网络模型训练的开销相应增大.因此为了更好地应对大量的训练开销,在分布式计算环境中对深度神经... 通过增加模型的深度以及训练数据的样本数量,深度神经网络模型能够在多个机器学习任务中获得更好的性能,然而这些必要的操作会使得深度神经网络模型训练的开销相应增大.因此为了更好地应对大量的训练开销,在分布式计算环境中对深度神经网络模型的训练过程进行加速成为了研发人员最常用的手段.随机梯度下降(stochastic gradient descent,SGD)算法是当前深度神经网络模型中最常见的训练算法之一,然而SGD在进行并行化的时候容易产生梯度过时问题,从而影响算法的整体收敛性.现有解决方案大部分针对的是各节点性能差别较小的高性能计算(high performance computing,HPC)环境,很少有研究考虑过各节点性能差别较大的集群环境.针对上述问题进行研究并提出了一种基于性能感知技术的动态batch size随机梯度下降算法(dynamic batch size SGD,DBS-SGD).该算法通过分析各节点的计算能力,对各节点的minibatch进行动态分配,从而保证了节点间每次迭代更新的时间基本一致,进而降低了节点的平均梯度过时值.提出的算法能够有效优化异步更新策略中存在的梯度过时问题.选用常用的图像分类基准Mnist和cifar10作为训练数据集,将该算法与异步随机梯度下降(asynchronous SGD,ASGD)算法、n-soft算法进行了对比.实验结果表明:在不损失加速比的情况下,Mnist数据集的loss函数值降低了60%,cifar数据集的准确率提升了约10%,loss函数值降低了10%,其性能高于ASGD算法和n-soft算法,接近同步策略下的收敛曲线. 展开更多
关键词 参数服务器 异步随机梯度下降算法 梯度过时 性能感知 数据并行
在线阅读 下载PDF
基于SGD算法优化的BP神经网络围岩参数反演模型研究 被引量:8
11
作者 孙泽 宋战平 +1 位作者 岳波 杨子凡 《隧道建设(中英文)》 CSCD 北大核心 2023年第12期2066-2076,共11页
为充分利用现场监测数据所反馈的围岩变形信息,对岩体力学参数进行反演,以贵州省剑河至黎平高速公路TJ-1标段牛练塘隧道为工程背景,选择围岩弹性模量、黏聚力、泊松比及内摩擦角为影响因素,通过设计正交试验及有限元模拟,获取25组围岩... 为充分利用现场监测数据所反馈的围岩变形信息,对岩体力学参数进行反演,以贵州省剑河至黎平高速公路TJ-1标段牛练塘隧道为工程背景,选择围岩弹性模量、黏聚力、泊松比及内摩擦角为影响因素,通过设计正交试验及有限元模拟,获取25组围岩物理力学参数组合及其对应的拱顶沉降值和拱腰收敛模拟值。基于随机梯度下降算法(stochastic gradient descent algorithm,简称SGD算法)对传统BP神经网络模型进行改进,建立以拱顶沉降值和拱腰收敛值为输入参数,以围岩弹性模量、黏聚力、泊松比及内摩擦角为输出值的基于SGD算法优化的BP神经网络模型,实现围岩参数的反演分析。将反演所得的围岩参数代入有限元模型,验证优化BP神经网络模型的可行性和准确性。最后,分析围岩变形及初期支护受力特性并给出施工建议。结果表明:1)基于SGD算法优化的BP神经网络模型计算得出的拱顶沉降值、拱腰收敛值、拱肩收敛值与现场实测值的相对误差率在2.50%~24.01%,均低于传统BP神经网络模型计算得出的误差率(11.51%~93.71%),验证优化BP神经网络模型的可行性和优越性;2)上、下台阶拱脚处的喷层和锚杆有应力集中现象,有破坏风险,建议施工中加强拱脚支护,防止发生工程事故。 展开更多
关键词 隧道工程 围岩参数反演 随机梯度下降算法 神经网络 正交试验法 数值模拟
在线阅读 下载PDF
基于SGDM优化IWOA-CNN的配电网工程造价控制研究 被引量:15
12
作者 李康 鲍刚 +1 位作者 徐瑞 刘毅楷 《广西大学学报(自然科学版)》 CAS 北大核心 2023年第3期692-702,共11页
为了控制配电网工程项目的成本,需准确预测配电网工程造价,本文提出一种基于带动量因子的随机梯度下降(stochastic gradient descent with momentum factor, SGDM)优化的改进鲸鱼算法-卷积神经网络工程造价预测模型。首先,考虑回路数、... 为了控制配电网工程项目的成本,需准确预测配电网工程造价,本文提出一种基于带动量因子的随机梯度下降(stochastic gradient descent with momentum factor, SGDM)优化的改进鲸鱼算法-卷积神经网络工程造价预测模型。首先,考虑回路数、杆塔数、导线、地形、地质、风速、覆冰、导线截面、混凝土杆、塔材、绝缘子(直线)、绝缘子(耐张)、基坑开方、基础钢材、底盘和水泥对配电网工程造价的影响,建立了非线性函数关系;采用SGDM优化器改进的卷积神经网络对函数进行逼近,并用贝叶斯方法优化卷积神经网络的超参数;利用改进的鲸鱼算法(improved whale optimization algorithm, IWOA)优化卷积神经网络,找出卷积神经网络的最优学习率。数值算例表明,新模型预测效果较好,并提出相应的控制策略。 展开更多
关键词 配电网工程造价 鲸鱼算法 卷积神经网络 随机梯度下降优化器 贝叶斯优化 非线性收敛因子 自适应权重
在线阅读 下载PDF
基于Local SGD的部分同步通信策略 被引量:2
13
作者 魏业鸣 郑美光 《计算机应用研究》 CSCD 北大核心 2023年第12期3754-3759,共6页
Local SGD训练方法用于分布式机器学习以缓解通信瓶颈,但其本地多轮迭代特性使异构集群节点计算时间差距增大,带来较大同步时延与参数陈旧问题。针对上述问题,基于Local SGD方法提出了一种动态部分同步通信策略(LPSP),该方法利用两层决... Local SGD训练方法用于分布式机器学习以缓解通信瓶颈,但其本地多轮迭代特性使异构集群节点计算时间差距增大,带来较大同步时延与参数陈旧问题。针对上述问题,基于Local SGD方法提出了一种动态部分同步通信策略(LPSP),该方法利用两层决策充分发挥Local SGD本地迭代优势。在节点每轮迭代计算结束后,基于本地训练情况判断通信可能性,并在全局划分同步集合以最小化同步等待时延,减少Local SGD通信开销并有效控制straggler负面影响。实验表明LPSP可以在不损失训练精确度的情况下实现最高0.75~1.26倍的加速,此外,最高还有5.14%的精确度提升,可以有效加速训练收敛。 展开更多
关键词 分布式机器学习 随机梯度下降 参数服务器 部分同步
在线阅读 下载PDF
基于Bagging-Down SGD算法的分布式深度网络 被引量:1
14
作者 秦超 高晓光 陈大庆 《系统工程与电子技术》 EI CSCD 北大核心 2019年第5期1021-1027,共7页
通过对大量数据进行训练并采用分布式深度学习算法可以学习到比较好的数据结构,而传统的分布式深度学习算法在处理大数据集时存在训练时间比较慢或者训练精度比较低的问题。提出Bootstrap向下聚合随机梯度下降(Bootstrap aggregating-do... 通过对大量数据进行训练并采用分布式深度学习算法可以学习到比较好的数据结构,而传统的分布式深度学习算法在处理大数据集时存在训练时间比较慢或者训练精度比较低的问题。提出Bootstrap向下聚合随机梯度下降(Bootstrap aggregating-down stochastic gradient descent,Bagging-Down SGD)算法重点来提高分布式深度网络的学习速率。Bagging-Down SGD算法通过在众多单机模型上加入速度控制器,对单机计算的参数值做统计处理,减少了参数更新的频率,并且可以使单机模型训练和参数更新在一定程度上分开,在保证训练精度的同时,提高了整个分布式模型的训练速度。该算法具有普适性,可以对多种类别的数据进行学习。 展开更多
关键词 深度网络 分布式 Bootstrap向下聚合随机梯度下降 速度控制器
在线阅读 下载PDF
分布式训练系统及其优化算法综述 被引量:8
15
作者 王恩东 闫瑞栋 +1 位作者 郭振华 赵雅倩 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期1-28,共28页
人工智能利用各种优化技术从海量训练样本中学习关键特征或知识以提高解的质量,这对训练方法提出了更高要求.然而,传统单机训练无法满足存储与计算性能等方面的需求.因此,利用多个计算节点协同的分布式训练系统成为热点研究方向之一.本... 人工智能利用各种优化技术从海量训练样本中学习关键特征或知识以提高解的质量,这对训练方法提出了更高要求.然而,传统单机训练无法满足存储与计算性能等方面的需求.因此,利用多个计算节点协同的分布式训练系统成为热点研究方向之一.本文首先阐述了单机训练面临的主要挑战.其次,分析了分布式训练系统亟需解决的三个关键问题.基于上述问题归纳了分布式训练系统的通用框架与四个核心组件.围绕各个组件涉及的技术,梳理了代表性研究成果.在此基础之上,总结了基于并行随机梯度下降算法的中心化与去中心化架构研究分支,并对各研究分支优化算法与应用进行综述.最后,提出了未来可能的研究方向. 展开更多
关键词 分布式训练系统 (去)中心化架构 中心化架构算法 (异)同步算法 并行随机梯度下降 收敛速率
在线阅读 下载PDF
基于DSGD的分布式电磁目标识别
16
作者 王宏安 黄达 +4 位作者 张伟 潘晔 王祥丰 邵怀宗 顾杰 《系统工程与电子技术》 EI CSCD 北大核心 2023年第10期3024-3031,共8页
分布式电磁目标识别利用分布式最优化和分布式计算等技术实现传统集中式电磁目标识别。分布式最优化方法结合分布式计算架构实现对最优化问题的分布式求解,以分布式实现从问题信息、数据到最优目标识别模型的映射。利用去中心化随机梯... 分布式电磁目标识别利用分布式最优化和分布式计算等技术实现传统集中式电磁目标识别。分布式最优化方法结合分布式计算架构实现对最优化问题的分布式求解,以分布式实现从问题信息、数据到最优目标识别模型的映射。利用去中心化随机梯度下降方法这一经典分布式最优化方法,建立面向电磁目标识别的分布式计算架构和分布式电磁目标识别方法。实际电磁信号数据验证了所提算法的有效性。在分布式电磁目标识别算法与集中式识别算法性能均保持在90%以上时,单节点训练时间下降50%以上,显著提升了训练效率。 展开更多
关键词 电磁目标识别 分布式 去中心化 随机梯度下降 一致性约束
在线阅读 下载PDF
基于算力-能量全分布式在线共享的5G网络负荷管理策略 被引量:3
17
作者 孙毅 陈恺 +4 位作者 郑顺林 王文婷 于芃 李开灿 董文秀 《电力系统保护与控制》 EI CSCD 北大核心 2024年第9期154-165,共12页
5G与边缘计算等信息基础设施海量部署造成运营商用电成本上升,需推动边缘网络与电网的能量互动以节能降本。现有研究重点关注边缘网络参与日前经济调度,未考虑可再生能源和网络流量双重随机性造成的网络能量供需不平衡问题。针对强随机... 5G与边缘计算等信息基础设施海量部署造成运营商用电成本上升,需推动边缘网络与电网的能量互动以节能降本。现有研究重点关注边缘网络参与日前经济调度,未考虑可再生能源和网络流量双重随机性造成的网络能量供需不平衡问题。针对强随机环境下的网络负荷管理问题,提出面向虚拟化边缘网络的能量实时管理策略。首先,以网络用能成本最小化为目标,构建联合网络资源管理、储能充放电与能量共享模型。其次,针对未来网络信息未知无法直接求解的问题,提出基于随机对偶次梯度法的在线管理策略。然后,针对资源共享涉及运营商隐私问题,提出全分布式的计算资源与能量协同共享算法。最后,仿真验证表明,所提在线算法在无需先验知识的前提下有效减少了5G边缘网络的用能成本。 展开更多
关键词 5G通信 在线调度 信息能量耦合 资源共享 随机对偶次梯度法 联邦梯度下降法
在线阅读 下载PDF
基于FPGA并行实现SVM训练的可重构计算系统 被引量:1
18
作者 彭卫东 郭威 魏麟 《计算机科学》 CSCD 北大核心 2024年第S02期786-792,共7页
针对支持向量机在处理大规模数据集时所面临的计算复杂度高和训练时间长的问题,设计了一种基于FPGA并行实现支持向量机训练的可重构计算系统,并分析了不同量化方式下的硬件资源消耗与加速性能。通过采用随机梯度下降法训练支持向量机,... 针对支持向量机在处理大规模数据集时所面临的计算复杂度高和训练时间长的问题,设计了一种基于FPGA并行实现支持向量机训练的可重构计算系统,并分析了不同量化方式下的硬件资源消耗与加速性能。通过采用随机梯度下降法训练支持向量机,使得需要求解的维度与样本的维度相关联,相较于传统的基于二次规划的求解方法可以显著降低计算复杂性。同时,利用基于FPGA的可重构硬件平台设计了专用并行计算结构以加速支持向量机的训练过程。对设计的完整系统进行了软硬件联合仿真,在4个公共数据集上的仿真结果表明,整体模型预测准确率达到90%以上;在训练阶段,相较于采用相同算法的软件实现,所提出的浮点数表示下硬件实现的单个样本处理时间至少减少了2个数量级;定点数表示下硬件实现的单个样本处理时间最大减小了3个数量级;与基于二次规划问题求解的硬件实现相比,单个样本处理速度最快提升了394倍。 展开更多
关键词 现场可编程逻辑门阵列 支持向量机 可重构系统 并行计算 随机梯度下降法
在线阅读 下载PDF
面向线束预装配的多约束线束布局方法研究
19
作者 罗月童 彭俊 +3 位作者 高景一 罗睿明 陈绩 周波 《图学学报》 CSCD 北大核心 2024年第1期139-147,共9页
线束由一组线束段按树状结构连接而成,是飞机汽车等产品中连接各电气设备的接线部件。为提高安装效率,复杂线束需要在线束工装板图上进行预安装,即根据角度、距离、交叉、边界等工艺约束在工装板上摆放线束,是一个多约束下的线束布局问... 线束由一组线束段按树状结构连接而成,是飞机汽车等产品中连接各电气设备的接线部件。为提高安装效率,复杂线束需要在线束工装板图上进行预安装,即根据角度、距离、交叉、边界等工艺约束在工装板上摆放线束,是一个多约束下的线束布局问题。通过借鉴图布局算法,将线束布局转换为优化问题,并采用随机梯度下降法SGD每次随机挑选一对线束段进行优化,逐步迭代收敛。因为线束段是长度不变的刚体,所以移动一根线束段时会带动相连的其他线束段,进而导致SGD迭代过程出现震荡,难以收敛。通过提出双向传递的线束段移动算法,在保证线束段能移动到目标位置的同时尽量少相连线束段的变动。使用合成线束案例和某真实飞机线束案例进行有效性验证,结果表明各工艺约束能均能得到满足,符合线束预装配的生产要求。 展开更多
关键词 线束布局 图布局 随机梯度下降 多约束 预装配
在线阅读 下载PDF
基于多目标异权重回归的冷水机组故障诊断显式模型 被引量:1
20
作者 吴孔瑞 韩华 +2 位作者 杨钰婷 陆海龙 凌敏彬 《制冷学报》 CAS CSCD 北大核心 2024年第1期118-128,共11页
针对冷水机组中常见的7种故障,本文基于交叉熵损失函数和随机梯度下降算法建立了多目标异权重回归模型,进行故障诊断。该模型较常规的机器学习分类模型简单,无需迭代,计算速度快,且为显式模型(非黑箱),可直观分析各参数对每类故障的重... 针对冷水机组中常见的7种故障,本文基于交叉熵损失函数和随机梯度下降算法建立了多目标异权重回归模型,进行故障诊断。该模型较常规的机器学习分类模型简单,无需迭代,计算速度快,且为显式模型(非黑箱),可直观分析各参数对每类故障的重要程度。与传统的单目标回归模型相比,故障诊断性能优势显著,在不同特征集合下,性能最低提升40.50%。对比不同文献中特征集合在本模型中的效果,并提出了新的特征集合,正常运行及7类故障的总体诊断准确率可达89.83%,局部故障的诊断准确率达到98%以上。通过可视化诊断模型中的参数权重,发现过冷度和供油温度参数对诊断制冷剂泄漏、制冷剂过充和润滑油过量3种系统性故障最为重要;供油压力、冷凝器趋近温度、蒸发器与冷凝器的水流量参数对诊断4种局部故障最为重要。 展开更多
关键词 冷水机组 故障诊断 显式模型 交叉熵 随机梯度下降
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部