The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to descri...The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to describe the phenomenon of intermit-tent observations. According to the cubature sample principle, theestimation error and the error covariance matrix (ECM) of CKFIare derived by Taylor series expansion, respectively. Afterwards, itis theoretically proved that the ECM will be bounded if the obser-vation arrival probability exceeds a critical minimum observationarrival probability. Meanwhile, under proper assumption corre-sponding with real engineering situations, the stochastic stabilityof the estimation error can be guaranteed when the initial estima-tion error and the stochastic noise terms are sufficiently small. Thetheoretical conclusions are verified by numerical simulations fortwo illustrative examples; also by evaluating the tracking perfor-mance of the optical-electric target tracking system implementedby CKFI and unscented Kalman filter with intermittent observa-tions (UKFI) separately, it is demonstrated that the proposed CKFIslightly outperforms the UKFI with respect to tracking accuracy aswell as real time performance.展开更多
Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular syste...Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.展开更多
Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short...Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short-time Fourier transform(STFT)to dynamically estimate the signal to noise ratio(SNR)and relative frequency of the input time-varying frequency periodic signal.Then the model of time and space difference step size and signal to noise ratio(SNR)and relative frequency of quantum random filter is established by least square method.Finally,the parameters of the quantum filter can be determined step by step by analyzing the characteristics of the actual signal.The simulation results of single-frequency signal and frequency time-varying signal show that the proposed method can quickly and accurately design the optimal filter parameters based on the characteristics of the input signal,and achieve significant filtering effects.展开更多
This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First...This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
This paper proposes a predictive compensation strategy to reduce the detrimental effect of stochastic time delays induced by communication networks on control performance. Values of a manipulated variable at the prese...This paper proposes a predictive compensation strategy to reduce the detrimental effect of stochastic time delays induced by communication networks on control performance. Values of a manipulated variable at the present sampling instant and future time instants can be determined by performing a receding horizon optimal procedure only once. When the present value of the manipulated variable does not arrive at a smart actuator, its predictive one is imposed to the corresponding process. Switching of a manipulated variable between its true present value and the predictive one usually results in unsmooth operation of a control system. This paper shows: 1) for a steady process,as long as its input is sufficiently smooth, the smoothness of its output can be guaranteed; 2) a manipulated variable can be switched smoothly by filtering the manipulated variable just using a simple low-pass filter. Thus the control performance can be improved. Finally, the effectiveness of the proposed method is demonstrated by simulation study.展开更多
A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represe...A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.展开更多
The H∞-control problem of stochastic systems with time-delay is considered. The sufficient conditions are obtained, under which there are always state-feedback control and dynamic output-feedback control so that the ...The H∞-control problem of stochastic systems with time-delay is considered. The sufficient conditions are obtained, under which there are always state-feedback control and dynamic output-feedback control so that the resulting closed-loop system is internaly stable and L2 input-output stable in the sense of expectation. Furthermore, the explicit formulas of both kinds of controls are derived. An example is included to illustrate the correctness of theoretic results.展开更多
The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. Th...The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.展开更多
We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed....We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.展开更多
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentia...The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F...This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.展开更多
针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CH...针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CHB子模块互联的两级变换器(cascaded H-bridges with quad active bridge,CHB-QAB)作为调速变换器。CHB-QAB通过四绕组高频变压器将各子模块进行内部互联,采用单边同步双边移相调制的策略,使得所有子模块呈现开关电容特性,在不依赖复杂控制的前提下,减小子模块电容的容值,提升系统的功率密度。针对三类动力源,采用基于低通滤波(lowpassfilter,LPF)的能量管理策略,保证电机实际运行过程中的有效功率分配,解决燃料电池对电机动态响应缓慢和燃料饥饿现象等问题。最后通过仿真与实验对所提轻量化电机调速系统进行验证。展开更多
基金supported by the National Natural Science Foundation of China(6110418661273076)
文摘The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to describe the phenomenon of intermit-tent observations. According to the cubature sample principle, theestimation error and the error covariance matrix (ECM) of CKFIare derived by Taylor series expansion, respectively. Afterwards, itis theoretically proved that the ECM will be bounded if the obser-vation arrival probability exceeds a critical minimum observationarrival probability. Meanwhile, under proper assumption corre-sponding with real engineering situations, the stochastic stabilityof the estimation error can be guaranteed when the initial estima-tion error and the stochastic noise terms are sufficiently small. Thetheoretical conclusions are verified by numerical simulations fortwo illustrative examples; also by evaluating the tracking perfor-mance of the optical-electric target tracking system implementedby CKFI and unscented Kalman filter with intermittent observa-tions (UKFI) separately, it is demonstrated that the proposed CKFIslightly outperforms the UKFI with respect to tracking accuracy aswell as real time performance.
基金Supported by National Natural Science Foundation of P. R. China (60504034) Youth Foundation of Heilongjiang Province (QC04A01) Outstanding Youth Foundation of Heilongjiang University (JC200404)
文摘Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.
基金Projects(2017H0022,2016H6015)supported by Fujian Science and Technology Key Project,China
文摘Designing optimal time and spatial difference step size is the key technology for quantum-random filtering(QSF)to realize time-varying frequency periodic signal filtering.In this paper,it was proposed to use the short-time Fourier transform(STFT)to dynamically estimate the signal to noise ratio(SNR)and relative frequency of the input time-varying frequency periodic signal.Then the model of time and space difference step size and signal to noise ratio(SNR)and relative frequency of quantum random filter is established by least square method.Finally,the parameters of the quantum filter can be determined step by step by analyzing the characteristics of the actual signal.The simulation results of single-frequency signal and frequency time-varying signal show that the proposed method can quickly and accurately design the optimal filter parameters based on the characteristics of the input signal,and achieve significant filtering effects.
基金the National Natural Science Foundation of China (60634020)the Hunan Provincial Natural Science Foundation of China (07JJ6138)+1 种基金the Postdoctoral Science Foundation of China (20060390883)the China Ph.D. Discipline Special Foundation (20050533028).
文摘This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.
基金Supported by National Young Science Foundation of P.R.China(60604003)National Natural Science Key Foundation of P.R.China(60434020)National Key Technologies Research and Development Program in the 10th Five-year Plan(2001BA204B01)
文摘这份报纸处理与州的时间延期,参数无常和未知统计特征,但是与有限力量骚乱为 Lurie 单个系统的一个班过滤的柔韧的 H 的问题,试图设计一个要用体力地稳定的过滤器以便单个系统是的不明确的 Lurie 时间延期不仅常规,免费、稳定的推动,而且为所有可被考虑的无常为过滤错误动力学有 H 性能的规定水平。为如此的一个过滤器的存在的一个足够的条件以线性矩阵不平等(LMI ) 被建议。当 LMI 的这个集合的一个答案存在时,一个需要的过滤器的参量的矩阵能容易用 LMI 工具箱被获得。
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800) and National Natural Science Foundation of China (60974059, 60736026, 61021063)
基金Supported by National Natural Science Foundation of China (10571036) the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金Supported by the Funds for Creative Research Groups of China 60521003), the State Key Program of National Natural Science of ina (60534010), National Natural Science Foundation of China (60674021), the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019), and the 111 Project (B08015)
文摘过滤有限的词长度(FWL ) 为线性分离时间的系统影响的问题的 nonfragile H 在这份报纸被调查。要设计的过滤器被假定与添加剂获得变化,它在过滤器实现上反映 FWL 效果。结构化的顶点隔板的一个观点被建议处理这个问题并且利用了以一套线性矩阵不平等(LMI ) 为 nonfragile H 过滤器设计开发足够的条件。设计使扩充系统变为 asymptotically 稳定并且保证 H 变细水平不到规定水平。一个数字例子被给说明建议方法的效果。
基金Supported by National High Technology Research and Development Program of P. R. China (2002AA412510)National Natural Science Foundation of P. R. China (60274034)
文摘This paper proposes a predictive compensation strategy to reduce the detrimental effect of stochastic time delays induced by communication networks on control performance. Values of a manipulated variable at the present sampling instant and future time instants can be determined by performing a receding horizon optimal procedure only once. When the present value of the manipulated variable does not arrive at a smart actuator, its predictive one is imposed to the corresponding process. Switching of a manipulated variable between its true present value and the predictive one usually results in unsmooth operation of a control system. This paper shows: 1) for a steady process,as long as its input is sufficiently smooth, the smoothness of its output can be guaranteed; 2) a manipulated variable can be switched smoothly by filtering the manipulated variable just using a simple low-pass filter. Thus the control performance can be improved. Finally, the effectiveness of the proposed method is demonstrated by simulation study.
基金the National Natural Science Foundation of China (60574001)Program for New CenturyExcellent Talents in University (NCET-05-0485) and PIRTJiangnan
文摘A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.
文摘The H∞-control problem of stochastic systems with time-delay is considered. The sufficient conditions are obtained, under which there are always state-feedback control and dynamic output-feedback control so that the resulting closed-loop system is internaly stable and L2 input-output stable in the sense of expectation. Furthermore, the explicit formulas of both kinds of controls are derived. An example is included to illustrate the correctness of theoretic results.
文摘The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.
文摘We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.
文摘The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China(Grant Nos.62303380,62176214,62101590,62003268)the Aeronautical Science Foundation of China(Grant No.201907053001).
文摘This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.
文摘针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CHB子模块互联的两级变换器(cascaded H-bridges with quad active bridge,CHB-QAB)作为调速变换器。CHB-QAB通过四绕组高频变压器将各子模块进行内部互联,采用单边同步双边移相调制的策略,使得所有子模块呈现开关电容特性,在不依赖复杂控制的前提下,减小子模块电容的容值,提升系统的功率密度。针对三类动力源,采用基于低通滤波(lowpassfilter,LPF)的能量管理策略,保证电机实际运行过程中的有效功率分配,解决燃料电池对电机动态响应缓慢和燃料饥饿现象等问题。最后通过仿真与实验对所提轻量化电机调速系统进行验证。