In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced...In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.展开更多
Automatic video mosaicking is a challenging task in computer vision. Current researches consider either panoramic or mapping tasks on short videos. In this paper, an automatic mosaicking algorithm is proposed for both...Automatic video mosaicking is a challenging task in computer vision. Current researches consider either panoramic or mapping tasks on short videos. In this paper, an automatic mosaicking algorithm is proposed for both mapping and panoramic tasks based on the adapted key-frame on videos of any length.The speeded up robust features(SURF) and the grid motion statistic(GMS) algorithm are used for feature extraction and matching between consecutive frames, which are used to compute the transformation. In order to reduce the influence of the accumulated error during image stitching, an evaluation metric is put forward for the transformation matrix. Besides, a self-growth method is employed to stitch the global image for long videos. The algorithm is evaluated by using aerial-view and panoramic videos respectively on the graphic processing unit(GPU) device, which can satisfy the real-time requirement. The experimental results demonstrate that the proposed algorithm is able to achieve a better performance than the state-of-art.展开更多
基金supported by the National Natural Science Foundation of China(61473100)
文摘In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.
基金supported by the National Science Foundation of China(61603040,61973036,61433003)。
文摘Automatic video mosaicking is a challenging task in computer vision. Current researches consider either panoramic or mapping tasks on short videos. In this paper, an automatic mosaicking algorithm is proposed for both mapping and panoramic tasks based on the adapted key-frame on videos of any length.The speeded up robust features(SURF) and the grid motion statistic(GMS) algorithm are used for feature extraction and matching between consecutive frames, which are used to compute the transformation. In order to reduce the influence of the accumulated error during image stitching, an evaluation metric is put forward for the transformation matrix. Besides, a self-growth method is employed to stitch the global image for long videos. The algorithm is evaluated by using aerial-view and panoramic videos respectively on the graphic processing unit(GPU) device, which can satisfy the real-time requirement. The experimental results demonstrate that the proposed algorithm is able to achieve a better performance than the state-of-art.