Transverse stimulated Raman scattering (TSRS) gain coefficient in a large aperture 65% deu terated potassium dihydrogen phosphate (DKDP) is measured at 351 nm. The measurement involves the use of an optical fiber ...Transverse stimulated Raman scattering (TSRS) gain coefficient in a large aperture 65% deu terated potassium dihydrogen phosphate (DKDP) is measured at 351 nm. The measurement involves the use of an optical fiber sensor system to detect Raman scattering light in the DKDP crystal. A Raman scattering gain coefficient of 0. 109 cm/GW is obtained and will be used to set upper limit of the DKDP crystals in our laser fa cility to avoid the TSRS induced energy loss and laser damage. The effect of bulk damage on growth behavior of TSRS is also examined and it is found that bulk damage has little impact on the TSRS growth. Thus the influ ence of bulk damage on the measurement of TSRS gain coefficient can be ignored.展开更多
文摘Transverse stimulated Raman scattering (TSRS) gain coefficient in a large aperture 65% deu terated potassium dihydrogen phosphate (DKDP) is measured at 351 nm. The measurement involves the use of an optical fiber sensor system to detect Raman scattering light in the DKDP crystal. A Raman scattering gain coefficient of 0. 109 cm/GW is obtained and will be used to set upper limit of the DKDP crystals in our laser fa cility to avoid the TSRS induced energy loss and laser damage. The effect of bulk damage on growth behavior of TSRS is also examined and it is found that bulk damage has little impact on the TSRS growth. Thus the influ ence of bulk damage on the measurement of TSRS gain coefficient can be ignored.