The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by ...The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)展开更多
Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5...Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.展开更多
A new stearic acid method(SAM) has been used to prepare ultrafine K2La2Ti3O10 nanocrystalline. Each state of synthesis process was followed by the use of FT IR analysis. The resulting materials have been characterized...A new stearic acid method(SAM) has been used to prepare ultrafine K2La2Ti3O10 nanocrystalline. Each state of synthesis process was followed by the use of FT IR analysis. The resulting materials have been characterized by means of XRD, TEM, BET surface area analysis. The acid exchanging property of the obtained product was also studied. The experimental results showed that comparing with the product of traditional solid state reaction, the particle size of the K2La2Ti3O10 synthesized by SAM is greatly reduced, BET surface area is high(more than 11.83m2· g- 1) and has different acid exchanging properties. It can be easily exfoliated in 2mol· L- 1 HNO3 solution.展开更多
基金Projects(CC20120031,CC20110048)supported by Changzhou Science and Technology Innovation Project,China
文摘The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)
基金Projects(13A047,10B054)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Project of Hunan Province,China
文摘Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.
文摘A new stearic acid method(SAM) has been used to prepare ultrafine K2La2Ti3O10 nanocrystalline. Each state of synthesis process was followed by the use of FT IR analysis. The resulting materials have been characterized by means of XRD, TEM, BET surface area analysis. The acid exchanging property of the obtained product was also studied. The experimental results showed that comparing with the product of traditional solid state reaction, the particle size of the K2La2Ti3O10 synthesized by SAM is greatly reduced, BET surface area is high(more than 11.83m2· g- 1) and has different acid exchanging properties. It can be easily exfoliated in 2mol· L- 1 HNO3 solution.