期刊文献+
共找到59,380篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of loading rate on the mechanical response and energy evolution of skarn rock subjected to constant-amplitude cyclic loading
1
作者 WU Yun-feng WANG Yu +5 位作者 LI Chang-hong ZHOU Bao-kun LI Peng CAI Mei-feng SUN Chang-kun TIAN Zi-cheng 《Journal of Central South University》 2025年第3期1117-1140,共24页
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain... This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies. 展开更多
关键词 cyclic loading loading rate constant amplitude deformation characteristics energy dissipation
在线阅读 下载PDF
Reliability analysis of modular charge swinging-loading positioning accuracy under new failure criterion based on spatial geometric relationship
2
作者 Zihan Wang Linfang Qian +3 位作者 Liu Yang Taisu Liu Weiwei Chen Haolin Zhang 《Defence Technology(防务技术)》 2025年第6期115-130,共16页
The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a mult... The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion. 展开更多
关键词 Artillery loading system Pendulum loader Dynamic model Failure criterion Reliability analysis
在线阅读 下载PDF
A fast-running engineering tool for assessing structural vulnerability to blast loading
3
作者 Carlo Crispino Salvatore Annunziata +2 位作者 Alberto Contini Luca Lomazzi Andrea Manes 《Defence Technology(防务技术)》 2025年第4期244-254,共11页
Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that e... Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that enhance the platform's chances of surviving different scenarios.Such scenarios can involve various types of threats that can affect the platform's survivability.Among such,blast waves impacting the platform's structure represent critical conditions that have not yet been studied in detail.That is,frameworks for vulnerability assessment that can deal with blast loading have not been presented yet.In this context,this work presents a fast-running engineering tool that can quantify the risk that a structure fails when it is subjected to blast loading from the detonation of high explosive-driven threats detonating at various distances from the structure itself.The tool has been implemented in an in-house software that calculates vulnerability to various impacting objects,and its capabilities have been shown through a simplified,yet realistic,case study.The novelty of this research lies in the development of an integrated computational environment capable of calculating the platform's vulnerability to blast waves,without the need for running expensive finite element simulations.In fact,the proposed tool is fully based on analytical models integrated with a probabilistic approach for vulnerability calculation. 展开更多
关键词 VULNERABILITY Blast loading Probabilistic assessment Analytical models Fast-running engineering tool
在线阅读 下载PDF
A new dimensionless number for dynamic plastic deformation analysis of clamped circular plates subjected to underwater blast loading
4
作者 Weizheng Xu Yu Huang +4 位作者 Tong Li Hao Tang Yexun Li Hua Fu Xianxu Zheng 《Defence Technology(防务技术)》 2025年第9期294-302,共9页
A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing e... A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing equations of circular plates.The relation between dimensionless final plastic deformation of circular plates and the new dimensionless number is established based on massive underwater explosion test data.Meanwhile,comparative analysis was discussed with two other published dimensionless parameters which indicated the new dimensionless number proposed in this paper is more effective and extensive to predict the dynamic plastic response of circular plates under underwater explosion condition. 展开更多
关键词 Dimensionless number Underwater blast loading Clamped circular plate Dynamic plastic deformation
在线阅读 下载PDF
Interfacial thermal contact model for consolidation of multilayered saturated soils subjected to time-dependent heating and loading
5
作者 TANG Ke-jie WEN Min-jie +4 位作者 TU Yuan WU Wen-bing XIE Jia-hao LIU Kai-fu WU Da-zhi 《Journal of Central South University》 2025年第6期2239-2255,共17页
Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t... Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance. 展开更多
关键词 multilayered saturated soils thermal consolidation thermal contact resistance time-dependent loading Laplace transform
在线阅读 下载PDF
Strength and failure characteristics of hard rock containing a single structural plane under varied loading angles : A true triaxial investigation
6
作者 XU Huai-sheng LI Shao-jun +3 位作者 XU Ding-ping LIU Xu-feng FENG Guang-liang WANG Zhao-feng 《Journal of Central South University》 2025年第5期1903-1921,共19页
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr... The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures. 展开更多
关键词 true triaxial compression hard rock structural plane loading angle STRENGTH failure characteristics
在线阅读 下载PDF
Dynamic response of polymethacrylimide foam sandwich structures with different core layers under water impact loading
7
作者 Peilin Zhu Jili Rong +2 位作者 Shenglong Wang Zichao Chen Zifan Jiang 《Defence Technology(防务技术)》 2025年第7期203-222,共20页
Polymethacrylimide(PMI)foam has the highest specific stiffness and strength among polymer foams,with excellent radar-absorbing capabilities,which provide it with broad prospects in underwater ap-plications.To evaluate... Polymethacrylimide(PMI)foam has the highest specific stiffness and strength among polymer foams,with excellent radar-absorbing capabilities,which provide it with broad prospects in underwater ap-plications.To evaluate the impact resistance of PMI foam sandwich structures,the dynamic response and energy absorption characteristics of PMI foam sandwich structures with different core layers under various water impact loads were investigated using combined experimental and numerical methods.A fluid-structure interaction device with a diffusion angle was used for water impact testing of the PMI foam sandwich structures.The 3D-DIC technique was employed to process the deformation images of the sandwich-structure back panel captured by the high-speed cameras.Numerical simulations were performed to analyze the dynamic deformation process of the PMI foam core.The results indicated that the maximum deformation of the back panel exhibited a nonlinear relationship with the impulse.Below the critical impulse,the maximum deformation of the back panel plateaued,which was determined by the core density.Beyond the critical impulse,the rate of deformation increased with the impulse was governed by the core thickness.Compared with different sandwich panels,PMI foam sandwich struc-tures demonstrate significant advantages in terms of impact resistance under high-impulse conditions. 展开更多
关键词 PMI foam sandwich structure Underwater impact loading Impact resistance Energy absorption characteristics
在线阅读 下载PDF
Investigation on dynamic response of liquid-filled cylindrical shellstructures under the action of combined blast and fragments loading
8
作者 Zhujie Zhao Hailiang Hou +4 位作者 Dian Li Xiaowei Wu Yongqing Li Zhenghan Chen Linzhi Wu 《Defence Technology(防务技术)》 2025年第7期334-354,共21页
This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri... This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation. 展开更多
关键词 Blast wave Combined blast and fragments loading Filling method Liquid-filled structure Dynamic response
在线阅读 下载PDF
Surface Pressure Loading Technology of Ship Structures 被引量:2
9
作者 DAI Ze-yu WEI Peng-yu +3 位作者 CHEN Xiao-ping JIANG Ze CHEN Zhe TANG Qin 《船舶力学》 EI CSCD 北大核心 2024年第12期1940-1952,共13页
A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator co... A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system. 展开更多
关键词 surface pressure load loading system ship structure strength test flexible bladder
在线阅读 下载PDF
Evolution of molecular structure of TATB under shock loading from transient Raman spectroscopic technique
10
作者 Hongliang Kang Xue Yang +5 位作者 Wenshuo Yuan Lei Yang Xinghan Li Fusheng Liu Zhengtang Liu Qijun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the im... By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the improvement in synchronization control between two-stage light gas gun and the transient Raman spectra acquisition,as well as the sample preparation,the Raman peak of the N-O mode of TATB was firstly observed under shock pressure up to 13.6 GPa,noticeably higher than the upper limit of 8.5 GPa reported in available literatures.By taking into account of the continuous shift of the main peak and other observed Raman peaks,we did not distinguish any structural transition or any new species.Moreover,both the present Raman spectra and the time-resolved radiation of TATB during shock loading showed that TATB exhibits higher chemical stability than previous declaration.To reveal the detailed structural response and evolution of TATB under compression,the density functional theoretical calculations were conducted,and it was found that the pressure make N-O bond lengths shorter,nitro bond angles larger,and intermolecular and intra-molecular hydrogen bond interactions enhanced.The observed red shift of Raman peak was ascribed to the abnormal enhancement of H-bound effect on the scissor vibration mode of the nitro group. 展开更多
关键词 TATB Raman spectra Structural evolution Shock loading
在线阅读 下载PDF
Ultimate Strength of Hull Perforated Plate Under Extreme Cyclic Loading
11
作者 ZHENG Ji-qian FENG Liang CHEN Xu-guang 《船舶力学》 EI CSCD 北大核心 2024年第12期1925-1939,共15页
In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyze... In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyzed. It is found that the ultimate strength of the perforated plates decreases rapidly and stabilizes in the first four cycles. Plates with oblong openings have a greater ultimate strength compared to plates with rectangular openings, while the relative strengthening ratio decreases over the duration of the cycle. The location of the openings is also an important parameter that affects the strength of the structure, as the plates with openings close to the edges in the longitudinal direction have higher strengths, while in the transverse direction the strengths are higher when the openings are close to the center. Among the three opening-strengthening methods compared, the Carling stiffener method maintains a better strengthening effect under cyclic loads for many periods. 展开更多
关键词 extreme cyclic loading perforated plate ultimate strength
在线阅读 下载PDF
Crack propagation and damage evolution of metallic cylindrical shells under internal explosive loading
12
作者 Yusong Luo Weibing Li +2 位作者 Junbao Li Wenbin Li Xiaoming Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期133-146,共14页
This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ... This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes. 展开更多
关键词 Internal explosive loading Failure criterion Crack propagation Damage evolution Freeze-recovery test
在线阅读 下载PDF
Strength and damage evolution mechanism of rock mass with holes under cyclic loading
13
作者 LIU Hong-tao HAN Zi-jun +6 位作者 GUO Xiao-fei LIU Qin-yu QIAO Zhong-jin LIANG Jia-lu CHENG Wen-cong ZHANG Xi-ying ZHANG Yu-qi 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2717-2735,共19页
The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic ... The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic loading, elucidates the acoustic emission (AE) characteristics and their spatial evolution, and establishes the interrelation among AE, stress, strain, time, and cumulative damage. The results reveal that the rock mass with holes and the intact rock mass show softening and hardening characteristics after cyclic loading. The plastic strain of the rock mass with holes is smaller than that of the intact rock mass, and the stress −strain curve shows hysteresis characteristics. Under uniaxial compression, the pore-bearing rock mass shows the characteristics of higher ringing count, AE energy, b-value peak, and more cumulative ringing count in the failure stage, while it shows lower characteristics under cyclic action. At the initial stage of loading, compared with the intact rock mass, the pore-containing rock mass shows the characteristics of a low b-value. The AE positioning and cumulative damage percentage are larger, and the AE positioning is denser around the hole. The specimen with holes is mainly shear failure, and the complete specimen is mainly tensile shear failure. 展开更多
关键词 roadway surrounding rock control acoustic emission cyclic loading failure mode precursor of destruction
在线阅读 下载PDF
An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading
14
作者 Pham Hoang Tu Tran Van Ke +1 位作者 Vu Khac Trai Le Hoai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期159-180,共22页
For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak ... For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak foundation in a hygro-temperature environment. The doubly-curved MEE shallow shell types include spherical shallow shell, cylindrical shallow shell, saddle shallow shell, and elliptical shallow shell subjected to blast load are investigated. The Maxwell equation and electromagnetic boundary conditions are used to determine the vary of the electric and magnetic potentials. The MEE shallow shell's equations of motion are derived from Hamilton's principle and refined higher-order shear theory. Then, the IGA method is used to derive the laws of natural frequencies and dynamic responses of the shell under various boundary conditions. The accuracy of the model and method is verified through reliable numerical comparisons. Aside from this, the impact of the input parameters on the free and forced vibration of the doubly-curved MEE shallow shell is examined in detail. These results may be useful in the design and manufacture of military structures such as warships, fighter aircraft, drones and missiles. 展开更多
关键词 IGA approach Free and forced vibration Doubly-curved MEE shallow shell Blast load
在线阅读 下载PDF
Forming and Springback Prediction of Strips Under Multi-square Punch Concave Forming Process Considering Partial-unloading Effects
15
作者 LIANG Qi-yu ZHANG Long ZHU Ling 《船舶力学》 EI CSCD 北大核心 2024年第12期1953-1969,共17页
To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are con... To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming. 展开更多
关键词 multi-square punch forming(MSPF) follower load elastic-plastic deformation partial unloading springback prediction
在线阅读 下载PDF
Investigation on the Ice Load on a Cylinder Vertically Breaking through Model Ice Sheet from Underneath
16
作者 ZHAO Wei−hang TIAN Yu−kui +3 位作者 JI Shao−peng GANG Xu−hao YU Chao−ge KONG Shuai 《船舶力学》 北大核心 2025年第6期964-975,共12页
Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e... Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters. 展开更多
关键词 CYLINDER model test failure mode crack propagation ice load numerical modeling
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
17
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Oscillation mechanism and predictive model of explosion load for natural gas in confined tube
18
作者 Chengjun Yue Li Chen Linfeng Xu 《Defence Technology(防务技术)》 2025年第3期13-27,共15页
Gas explosion in confined space often leads to significant pressure oscillation.It is widely recognized that structural damage can be severe when the oscillation frequency of the load resonates with the natural vibrat... Gas explosion in confined space often leads to significant pressure oscillation.It is widely recognized that structural damage can be severe when the oscillation frequency of the load resonates with the natural vibration frequency of the structure.To reveal the oscillation mechanism of gas explosion load,the experiment of gas explosion was conducted in a large-scale confined tube with the length of 30 m,and the explosion process was numerically analyzed using FLACS.The results show that the essential cause of oscillation effect is the reflection of the pressure wave.In addition,due to the difference in the propagation path of the pressure wave,the load oscillation frequency at the middle position of the tunnel is twice that at the end position.The average sound velocity can be used to calculate the oscillation frequency of overpressure accurately,and the error is less than 15%.The instability of the flame surface and the increase of flame turbulence caused by the interaction between the pressure wave and the flame surface are the main contributors to the increase in overpressure and amplitude.The overpressure peaks calculated by the existing flame instability model and turbulence disturbance model are 31.7%and 34.7%lower than the numerical results,respectively.The turbulence factor model established in this work can describe the turbulence enhancement effect caused by flame instability and oscillatory load,and the difference between the theoretical and numerical results is only 4.6%.In the theoretical derivation of the overpressure model,an improved model of dynamic turbulence factor is established,which can describe the enhancement effect of turbulence factor caused by flame instability and self-turbulence.Based on the one-dimensional propagation theory of pressure wave,the oscillatory effect of the load is derived to calculate the frequency and amplitude of pressure oscillation.The average error of amplitude and frequency is less than 20%. 展开更多
关键词 Gas explosion Oscillatory load Oscillation frequency Turbulence factor
在线阅读 下载PDF
Rate-frequency dependent shear behavior of rough rock joint experiencing normal load oscillations
19
作者 DANG Wen-gang LI Xing-ling +1 位作者 TAO Kang FU Jin-yang 《Journal of Central South University》 2025年第5期1873-1886,共14页
Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Const... Dynamic disturbances certainly reduce shear strength of rock joints,yet the mechanism needs deeper explanation.We investigate the shear behavior of a rough basalt joint by conducting laboratory shear experiments.Constant and superimposed oscillating normal loads are applied at the upper block.Meanwhile,the bottom block moves at a constant shear rate.We investigate the shear behavior by:1)altering the normal load oscillation frequency with a same shear rate,2)altering the shear rate with a same normal load oscillation frequency,and 3)altering the normal load oscillation frequency and shear rate simultaneously with a constant ratio.The results show that the oscillating normal load reduces the coefficient of friction(COF).The reduce degree of COF increases with higher shear rate,decreases when increasing normal load oscillation frequency,and keeps constant if the special ratio,v/f(shear rate divided by normal oscillation frequency),is constant.Moreover,we identify a time lag between peak normal load and peak shear load.And the lagging proportion increases with higher shear rate,and decreases with larger static COF.Our results imply that a lower creep rate with a higher normal load oscillation frequency easily destabilizes the creeping fault zones. 展开更多
关键词 normal load oscillation shear rate oscillation frequency friction reduction time lag
在线阅读 下载PDF
Study of the explosion load characteristics and structural response law under a cabin water mist environment: Experimental tests and simulations
20
作者 Xiaobin Li Ya Zhang +4 位作者 Yiheng Zhang Hai Huang Zhiping Wang Xingxing Wu Wei Chen 《Defence Technology(防务技术)》 2025年第7期387-404,共18页
To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistat... To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistatic pressure and structural residual deflection increase with increasing working pressure of the water mist nozzle.Specifically,the weakening rate of the initial peak overpressure ranges from 7.8%to 31.0%,the quasistatic pressure weakening rate ranges from 29.2%to 41.0%,and the weakening rate of the center of the plate residual deflection ranges from 10.8%to 34.4%under the various working pressures of the nozzles.To further explore the effect of water mist explosion suppression,a method for three-dimensional numerical simulations of water mist weakening the explosion shock wave is established to explore the explosion load characteristics of the compartment and the bulkhead response law.On the basis of the dimension analysis method,empirical formulas are derived to predict the residual deflection thickness in the center of the bulkheads.These findings provide the fundamental basis for the appli-cation of water mist in anti-explosive protection. 展开更多
关键词 Cabin explosion Blast response Fluidesolid coupling load weakening Water mist suppression
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部