为了对空间光学遥感器进行冲击响应预测,提出了一种基于统计能量分析(Statistical Energy Analysis,SEA)原理的新方法;基于稳态SEA推导了瞬态SEA的能量流平衡方程,结合虚拟模态综合与仿真方法(Virtual Mode Synthesis and Simulation,VM...为了对空间光学遥感器进行冲击响应预测,提出了一种基于统计能量分析(Statistical Energy Analysis,SEA)原理的新方法;基于稳态SEA推导了瞬态SEA的能量流平衡方程,结合虚拟模态综合与仿真方法(Virtual Mode Synthesis and Simulation,VMSS)和SEA方法进行空间光学遥感器的冲击响应预测;首先根据SEA原理,建立了典型空间光学遥感器的简化SEA模型,采用理论计算和试验测试的方法,得到了该模型各子系统的模态密度、内损耗因子、耦合损耗因子;在火工品附近安装冲击加速度传感器,点火起爆,测得冲击加速度时域曲线,以该测试数据为分析模型的输入,基于SEA方法进行冲击响应分析,得到反射镜子系统、遮光罩子系统、载荷板子系统的冲击响应谱曲线,该曲线与试验数据比对表明,在低频段由于模态密度较低,预测精度较差,在高频段其一致性小于4d B,从而验证了该方法在结构高频冲击响应预测的有效性。展开更多
关于整车车内噪声的仿真分析方法,在理论上,FEM/BEM方法可以进行全频段的仿真,但由于高频噪声的波长短,且在仿真初期结构材料的参数不确定,FEM/BEM参数识别和计算难度大,在这种情况下,基于能量平均思想的统计能量方法显现出其特定的求...关于整车车内噪声的仿真分析方法,在理论上,FEM/BEM方法可以进行全频段的仿真,但由于高频噪声的波长短,且在仿真初期结构材料的参数不确定,FEM/BEM参数识别和计算难度大,在这种情况下,基于能量平均思想的统计能量方法显现出其特定的求解优势。针对SEA分析方法理论就该方法在车内噪声应用领域展开探讨,从整车车内噪声激励源及噪声传递途径、整车NVH性能开发方法和整车SEA建模方法三个角度对车内高频噪声仿真进行阐述。SEA仿真在整车方面的应用现阶段主要用来指导声学包开发,对SEA仿真中的关键科学问题与工程实际的结合,介绍2个典型工程案例:其一基于双墙理论的车门隔声量优化,通过建立相对独立的双墙模型,提高建模过程中的仿真精度;其二通过控制声学包装优化变速箱高频啸叫,采用车内双层地毯的优化方法,降低驾驶员头部的声压1.31 d B。通过SEA方法对车内高频噪声进行仿真显著改善车辆的NVH性能,提高车辆乘坐舒适性,可为相关领域的研究提供参考及借鉴。展开更多
建立了包含27个子系统的前围板SEA(statistical energy analysis)法模型,通过理论计算确定了进行SEA分析所需的基本参数.求解隔声量并与试验结果对比,其吻合良好,验证了SEA法用来计算镁质前围板在高频段隔声量的有效性.根据各个子系统...建立了包含27个子系统的前围板SEA(statistical energy analysis)法模型,通过理论计算确定了进行SEA分析所需的基本参数.求解隔声量并与试验结果对比,其吻合良好,验证了SEA法用来计算镁质前围板在高频段隔声量的有效性.根据各个子系统的声透射曲线可知,在高频段,有必要对前围板整个模型而非局部进行声学优化.据此优化设计了一种复合前围板.为了更加客观地评价其优化效果,提出用降噪效率作为前围板声学优化的一个综合评价指标.通过改变多孔吸声层和空气层的厚度,综合考虑降噪效率、车内空间的限制、轻量化和成本的要求,确定其最优方案的空气层为1,mm,多孔吸声层为10,mm.声学优化后的前围板较优化前隔声量平均提高了20.2,d B,这对工程实际应用具有十分重要的意义.展开更多
平台支持船由于作业需要通常配备有动力定位系统,其在侧推工况下舱室噪声超标较为严重。针对这个问题采用计算流体力学(CFD)方法,得到侧推螺旋桨作用在导管上的脉动压力,并将时域计算结果转换成噪声计算的激励条件。采用有限元(FE)与统...平台支持船由于作业需要通常配备有动力定位系统,其在侧推工况下舱室噪声超标较为严重。针对这个问题采用计算流体力学(CFD)方法,得到侧推螺旋桨作用在导管上的脉动压力,并将时域计算结果转换成噪声计算的激励条件。采用有限元(FE)与统计能量分析(SEA)混合方法建立船体中频段FE-SEA耦合模型并建立船体高频段SEA模型,对某65 m AHTS船侧推工况下全频段(63 Hz~8000 Hz)舱室噪声进行预报,分析该船噪声分布规律及主要影响因素。并建立起全船的SEA模型,在中频段对比SEA与FE-SEA两种方法得到的舱室声压级频谱曲线,验证了使用混合模型的必要性。展开更多
文摘为了对空间光学遥感器进行冲击响应预测,提出了一种基于统计能量分析(Statistical Energy Analysis,SEA)原理的新方法;基于稳态SEA推导了瞬态SEA的能量流平衡方程,结合虚拟模态综合与仿真方法(Virtual Mode Synthesis and Simulation,VMSS)和SEA方法进行空间光学遥感器的冲击响应预测;首先根据SEA原理,建立了典型空间光学遥感器的简化SEA模型,采用理论计算和试验测试的方法,得到了该模型各子系统的模态密度、内损耗因子、耦合损耗因子;在火工品附近安装冲击加速度传感器,点火起爆,测得冲击加速度时域曲线,以该测试数据为分析模型的输入,基于SEA方法进行冲击响应分析,得到反射镜子系统、遮光罩子系统、载荷板子系统的冲击响应谱曲线,该曲线与试验数据比对表明,在低频段由于模态密度较低,预测精度较差,在高频段其一致性小于4d B,从而验证了该方法在结构高频冲击响应预测的有效性。
文摘关于整车车内噪声的仿真分析方法,在理论上,FEM/BEM方法可以进行全频段的仿真,但由于高频噪声的波长短,且在仿真初期结构材料的参数不确定,FEM/BEM参数识别和计算难度大,在这种情况下,基于能量平均思想的统计能量方法显现出其特定的求解优势。针对SEA分析方法理论就该方法在车内噪声应用领域展开探讨,从整车车内噪声激励源及噪声传递途径、整车NVH性能开发方法和整车SEA建模方法三个角度对车内高频噪声仿真进行阐述。SEA仿真在整车方面的应用现阶段主要用来指导声学包开发,对SEA仿真中的关键科学问题与工程实际的结合,介绍2个典型工程案例:其一基于双墙理论的车门隔声量优化,通过建立相对独立的双墙模型,提高建模过程中的仿真精度;其二通过控制声学包装优化变速箱高频啸叫,采用车内双层地毯的优化方法,降低驾驶员头部的声压1.31 d B。通过SEA方法对车内高频噪声进行仿真显著改善车辆的NVH性能,提高车辆乘坐舒适性,可为相关领域的研究提供参考及借鉴。
文摘建立了包含27个子系统的前围板SEA(statistical energy analysis)法模型,通过理论计算确定了进行SEA分析所需的基本参数.求解隔声量并与试验结果对比,其吻合良好,验证了SEA法用来计算镁质前围板在高频段隔声量的有效性.根据各个子系统的声透射曲线可知,在高频段,有必要对前围板整个模型而非局部进行声学优化.据此优化设计了一种复合前围板.为了更加客观地评价其优化效果,提出用降噪效率作为前围板声学优化的一个综合评价指标.通过改变多孔吸声层和空气层的厚度,综合考虑降噪效率、车内空间的限制、轻量化和成本的要求,确定其最优方案的空气层为1,mm,多孔吸声层为10,mm.声学优化后的前围板较优化前隔声量平均提高了20.2,d B,这对工程实际应用具有十分重要的意义.
文摘平台支持船由于作业需要通常配备有动力定位系统,其在侧推工况下舱室噪声超标较为严重。针对这个问题采用计算流体力学(CFD)方法,得到侧推螺旋桨作用在导管上的脉动压力,并将时域计算结果转换成噪声计算的激励条件。采用有限元(FE)与统计能量分析(SEA)混合方法建立船体中频段FE-SEA耦合模型并建立船体高频段SEA模型,对某65 m AHTS船侧推工况下全频段(63 Hz~8000 Hz)舱室噪声进行预报,分析该船噪声分布规律及主要影响因素。并建立起全船的SEA模型,在中频段对比SEA与FE-SEA两种方法得到的舱室声压级频谱曲线,验证了使用混合模型的必要性。