期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive image enhancement algorithm based on fuzzy entropy and human visual characteristics 被引量:3
1
作者 WANG Baoping MA Jianjun +3 位作者 HAN Zhaoxuan ZHANG Yan FANG Yang GE Yimeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期1079-1088,共10页
To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement al... To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range. 展开更多
关键词 image enhancement fuzzy entropy fuzzy partition logarithmic image processing(LIP) model human visual characteristic statistical characteristic
在线阅读 下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
2
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部