A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the...A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.展开更多
This paper calculated load-carrying of isogrid and orthogrid of carbon-epoxy composite trellis wound structure(C/E CTWS) using non-linear finite element method.Based on the analysis,test cases were designed and tests ...This paper calculated load-carrying of isogrid and orthogrid of carbon-epoxy composite trellis wound structure(C/E CTWS) using non-linear finite element method.Based on the analysis,test cases were designed and tests of axial compression were carried.Analysis result and test result fit well.In order to be used in the project,this kind of structure cut-out repairing was calculated.The method presented in this paper has been proved and can be used to solve complicated engineering problems.According to calculations and experimental results combined with application,a principle of choosing wound structure is obtained and principle could be applied to engineering.展开更多
基金Project(51078330) supported by the National Natural Science Foundation of ChinaProject(2012MS21339) supported by China Postdoctoral Science FoundationProject(2012GN012) supported by the Independent Innovation Foundation of Shandong University, China
文摘A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.
文摘This paper calculated load-carrying of isogrid and orthogrid of carbon-epoxy composite trellis wound structure(C/E CTWS) using non-linear finite element method.Based on the analysis,test cases were designed and tests of axial compression were carried.Analysis result and test result fit well.In order to be used in the project,this kind of structure cut-out repairing was calculated.The method presented in this paper has been proved and can be used to solve complicated engineering problems.According to calculations and experimental results combined with application,a principle of choosing wound structure is obtained and principle could be applied to engineering.