From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi's effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a co...From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi's effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a coupled hydromechanical analysis to solve the seepage-deformation interaction problem was illustrated by examining the equations of static equilibrium among the effective stress, seepage force, pore-water pressure and total stress. The conceptual definition of stress variable that satisfies the principles of continuum mechanics is applied in the coupled hydromechanical analysis. It is shown that Terzaghi's effective stress is in fact not a stress variable under seepage conditions, and the seepage force acting on the soil skeleton cannot be viewed as a body force. This offers a clue to the underlying cause of a paradox between the real Pascal's hydrostatic state and the hydrostatic state predicted by a class of continuum hydromechanical theories.展开更多
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl...Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.展开更多
A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into accou...A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into account based on switched nonlinear systems. Compared with traditional backstepping design methods,the proposed method utilizes the added integrals of attitude angle and angular rate tracking errors to further decrease the tracking errors. Moreover, to reduce the computation complexity, a rapid convergent differentiator is employed to obtain the derivative of the virtual control command. Finally, for disturbance rejection, based on the idea from the extended state observer(ESO), two disturbance observers are designed by using non-smooth functions to estimate the disturbances in the switched nonlinear systems. All signals of the closed-loop system are proven to be uniformly ultimately bounded under the Lyapunov function framework. Simulation results demonstrate the effectiveness of the proposed control scheme.展开更多
针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂...针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。展开更多
基金Project(51278171)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the"111"Project,China+1 种基金Projects(2014B04914,2011B02814,2010B28114)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(617608)supported by the Research Grants Council of the Hong Kong Special Administrative Region of China
文摘From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi's effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a coupled hydromechanical analysis to solve the seepage-deformation interaction problem was illustrated by examining the equations of static equilibrium among the effective stress, seepage force, pore-water pressure and total stress. The conceptual definition of stress variable that satisfies the principles of continuum mechanics is applied in the coupled hydromechanical analysis. It is shown that Terzaghi's effective stress is in fact not a stress variable under seepage conditions, and the seepage force acting on the soil skeleton cannot be viewed as a body force. This offers a clue to the underlying cause of a paradox between the real Pascal's hydrostatic state and the hydrostatic state predicted by a class of continuum hydromechanical theories.
基金supported by the National High-tech R&D Program of China(863 Program)(2015AA7326042 2015AA8321471)
文摘Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.
基金supported by the National Natural Science Foundation of China(61374012)the Aeronautical Science Foundation of China(2016ZA51011)
文摘A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into account based on switched nonlinear systems. Compared with traditional backstepping design methods,the proposed method utilizes the added integrals of attitude angle and angular rate tracking errors to further decrease the tracking errors. Moreover, to reduce the computation complexity, a rapid convergent differentiator is employed to obtain the derivative of the virtual control command. Finally, for disturbance rejection, based on the idea from the extended state observer(ESO), two disturbance observers are designed by using non-smooth functions to estimate the disturbances in the switched nonlinear systems. All signals of the closed-loop system are proven to be uniformly ultimately bounded under the Lyapunov function framework. Simulation results demonstrate the effectiveness of the proposed control scheme.
文摘针对微电网多储能单元因荷电状态、额定容量和线路阻抗差异导致部分储能单元过充过放,影响其使用寿命进而使微网稳定性调节能力变差的问题,提出一种基于变调节因子的多储能荷电状态(state of charge,SoC)均衡策略,通过反余切函数将下垂系数与SoC、额定容量关联,并引入虚拟压降补偿环节,实现多组储能单元间SoC均衡。在此基础上设计变调节因子,提高SoC均衡速度。仿真结果验证了所提策略能实现多组储能单元间SoC均衡,有效提升SoC均衡速度,并消除线路阻抗对SoC均衡及电流分配精度的影响。